
Microsoft. BASICProfessional Development System

Getting Started

Guide to Keystrokes
The following table lists the most commonly used keystrokes in the QuickBASIC Extended
(QBX), Programmer's WorkBench (PWB), and CodeView environments . Unless stated
otherwise, each keystroke has the same function in all three environments .

Alt

Esc

FI

Shift + Fl

F4

F5

F6

Shift + Arrow

Ctrl + Ins

Shift + Del

Shift + Ins

Alt + Backspace

Ctrl + Backspace

Activate the menu bar . Press the highlighted characters in the menu
names to open menus and to choose commands from a menu . Or, use the
Left Arrow and Right Arrow keys to highlight a menu title, and then
press the Up Arrow and Down Arrow keys to choose a command .
Pressing Alt a second time closes all open menus and deactivates the
menu bar.

Exit Help . Esc also closes menus and dialog boxes, cancelling any
entries .

Invoke the online Help system . To get help, move the cursor to the topic
on which you want more information : a keyword, a command, a dialog
box, or an error message . Then press F1 . To exit Help press Esc.

In the QBX environment, Shift + Fl explains Help . In PWB and
CodeView, Shift + Fl displays the Help Contents .

Display the output screen from within the environment . Pressing F4 a
second time returns you to the environment .

Begin executing the currently loaded program .

Move the cursor between visible windows .

Select text .

Copy selected text .

Cut selected text .

Paste cut or copied text at the current cursor position .

Undo the previous edit .

Restore the edit you've undone .

Microsoft BASIC
Getting Started

Version 7.1
For IBM. Personal Computers
and Compatibles

Microsoft Corporation

Information in this document is subject to change without
notice and does not represent a commitment oil the part of
Microsoft Corporation . The software described in this
document is furnished under a license agreement or
nondischlsure agreement . The software may he used or
copied only in accordance with the terms of the agreement .
It is against the lam to copy the software on any medium
except as specifically allowed in the license or nondisclosure
agreement . No part of this manual may he reproduced or
transmitted in any torn or by any means . electronic or
mechanical • including photocopying and recording. for any
purpose ~v ithout the express written permission of
NI crosoft .

Copyright 1989 . 1990 Microsoft Corporation . All rights
reserved .

Simimulrtneously published in the L' .S . and Canada .

Printdd and hound in the United States of America .

% icrosoft, MS . MS-DOS . and CodeView are registered
trademarks and Windows is a trademark of' Microsoft
G)rporatitm .

is a trademark x.1l Qualitas. Inc .

AT&T is _t registered trademark of American Telephone and
I -clcgraph Company .

13trieve is a reci`tcred trademark of SoftCraft . Inc., a Well
C'mpan. .

COMPAQ is a registered trademark of Compaq Computer
Corporation .

dBASE is a registered trademark of A .shton-Tate
Gtrporation .

IBM is a registered trademark of International Business
Ma,-times Corporumon .

Intel is a registered trademark of Intel Corporation .

Lutes is a registered trademark of Lotus Development
rp~ ration .

L. ~cunmcnl No . 1)[3()6X23-()5(-)()
OEM N . D7()4-7%

Table of Contents

Introduction v

Chapter 1 New Features

New Features in Version 7 .1 1
Language Enhancements 1
Capacity and Performance Enhancements 5
Environment and Usability Enhancements 7

Chapter 2 Setup

System Requirements 11
Setup Overview 11
Running Setup 12
After Running Setup 13
How Setup Uses Stub Files 15
Where to Go If You Need Additional Help 19

Chapter 3 Using QuickBASIC Extended

Running QBX 21
Writing a Program 23
Compiling a Program 26
Debugging a Program 27
Customizing the Environment 30
Controlling the Environment 31

Chapter 4 Using Programmer's WorkBench

Running PWB 34
Writing a Program 36
Compiling and Linking a Program 39
Debugging a Program 43
Customizing the Environment 51
Controlling the Environment 54

Chapter 5 Using Code View

Preparing BASIC Files for CodeView 57
Running CodeView 59
Debugging Your Program 61
Replaying a Debug Session 68
Advanced CodeView Techniques 69
Customizing CodeView with the TOOLS .INI File 70
Controlling CodeView with Command-Line Options 71

Getting Started

	

iii

Table of Contents

iv

Chapter 6 Using Online Help

Installing Help 73
Help Topics and Hyperlinks 74
Help Categories 75
Navigating in the Help System 78
Copying and Pasting Help Information 78
Creating Custom Help Files 78
Using Quickt-lelp 79

Chapter 7 Memory Management in DOS

Overview 81
Using Extended Memory (XMS) 82
U~in r Expanded Memory (EMS) 83
Considerations for QBX 86
Considerations for Programmer's WorkBench 88
Considerations for CodeView 89

Getting Started

Figures

171 ,21-11 - C 1 .1 Presentation Graphics 4
Figure 2 .1
Figure 3 .1
Figure 3 .2
Figure 3 .3
Figure 4 . 1
Figure 4 .2
Figure 4 .3
Figure 4 .4
Figure 4 .5
Figure 4 .6
Figure 4 .7
Figure 4 .8
Figure 4 .9
Figure 5 .1
Figure 5 .2
Figure 5 .3
Fi ure 5 .4
Figure 5 .5

Install with Current Options 13
The QBX Environment 22
Make EXE File Dialog Box 26
Symbol Help 28
The PWB Environment 34
File History on the File Menu 37
Compile Results Window 44
Browse Menu Selections 45
The Goto Definition Dialog Box 46
View Relationship Dialog Box 47
Source Browser Reference List 48
Source Browser Call Tree 49
Source Browser Program Outline 50
The CodeView Debugger 59
CodeView Watch Window 62
CodeView Memory Window 64
CodeView Register Window 65
CodeView Set Breakpoint Dialog Box 67

Figure 6 . 1
Figure 6 .2
Figure 6 .3

Help Screen with Hyperlinks 74
BASIC Syntax Help Screen 75
BASIC Help Table of contents Screen 76

Figure 6 .4 Help on the Programming Environment 77
Figure 6 .5
Figure 7 .1

Quick)-lelp 79
QBX View SUBS Dialog Box 87

Introduction

Welcome to MicrosoftK BASIC version 7 .1 Professional Development System . Microsoft
BASIC includes the tools and files you'll need to create and debug large, sophisticated BASIC
programs that run under the DOS and OS/2 operating systems . The Microsoft BASIC p.t_c),az ,2
includes the following

•

	

Microsoft QuickBASIC Extended (QBX) development environtllent

•

	

Microsoft Programmer's WorkBench (PWB) development environment

•

	

BASIC compiler (BC)

•

	

Integrated Indexed Sequential Access Method (ISAM) package

•

	

Major utilities :

- Microsoft Segmented-Executable Linker (LINK)

- Microsoft Library Manager (LIB)

- Microsoft Program-Maintenance Utility (NMAKE)

- Run-Time Module Build Utility (BUILDRTM)

- Microsoft Help File Creation Utility (HELPMAKE)

- Microsoft QuickHelp

•

	

Add-on libraries : Date/Time, Financial, and Format

•

	

Toolboxes : Matrix Math, Presentation Graphics . and User Interface

•

	

Microsoft CodeView k debugger and other mixed-language development tools

•

	

Printed and online documentation

Distribution of Run- Time Modules
As described in Paragraph 5 of the Microsoft License Agreement included with this product .
the following run-time modules may be distributed under the terms and conditions listed in the
agreement :

BRT71 xxx .EXE, BRT7 I xxx .DLL, HELVB.FON, TMSRB .FON . MSHERC .COyi .
MOUSE.COM, PATCH87 .EXE, FIXSHIFT.COM, PROISAM .E\E . PROIS .-ANID .E\E .
ISAMIO.EXE, ISAMCVT .EXE, ISAMPACK .EXE, and ISAMREPR .EXE .

These modules can only he distributed in conjunction With and as a necess :u-\ and integrated
component of your software product, in such a manner that the\, enhance or supplement the
core value otherwise existing in your software product .

G?fhne St r t d

	

v

Introduction

Vi

The following copyright notice applies to this product for purposes of run-time module
distribution :

Portions(C) 1982-1990 Microsoft Corporation . All rights reserved .

Documentation
Microsoft BASIC 7 .1 includes a full set of printed and online documentation .

Printed Documentation
Gettin,, Started gets you up and running with Microsoft BASIC .

The PrHl,rcuitnu'r's Guide provides information about programming concepts and techniques .
The first part of the manual focuses on the features of the BASIC language . Including such
topics as control-flow structures, string processing . and error/event handling . The second part
of the manual describes program development utilities supplied with Microsoft BASIC . These
chapters give the syntax and command-line options for each utility, as well as illustrative
examples . The appendixes contain the BASIC language definitions .

The BASIC Luti,,ua,e Re'fereice is divided into three parts. Each part begins with summary
tables listing the functions and statements described in that part, followed by individual
reference descriptions in alphabetical order .

•

	

Part I , "Language Reference," describes Microsoft BASIC functions . statements, and
metacommands .

•

	

Part ? . "Add-On-Library Reference," describes the functions in the add-on libraries .

•

	

Part 3, "BASIC Toolbox Reference," describes the procedures in the BASIC toolboxes .

The appendixes describe keyboard/scan codes, reserved words, command-line tools, and error
messages .

Online Documentation
Microsoft BASIC puts a complete online reference database at your fingertips with the new
Microsoft Advisor Online Help system . Online Help gives you context-sensitive Help for the
BASIC language, QBX, command-line compiler options, error messages, and symbols 111 your
programs . See Chapter 6, "Using Online Help," for more information .

Getting Started

Document Conventions

Introduction

Microsoft documentation uses the term "OS/2" to refer to the OS/2 systems-Microsoft
Operating System/2 (MS w OS/2) and IBM OS/2 . Similarly, the term "DOS" refers to the
MS-DOS and IBM Personal Computer DOS operating systems . The name of a specific
operating system is used when it is necessary to note features that are unique to that system .

This manual uses the following typographic conventions :

Example of convention

	

Description

setup

	

Words you type appear in this boldface font .

BASIC.LIB, ADD .EXE, COPY, LINK Uppercase (capital) letters indicate filename •,
and operating-system environment variables
and commands .

SUB, IF, LOOP, PRINT, TIME$

	

Bold uppercase letters indicate language-
specific keywords with special meaning to
Microsoft BASIC or another Microsoft
language .

Bad File Mode

	

This font is used for error messages .

handles

	

Italic letters indicate placeholders for
information _you supply . Italics are also
occasionally' used in the text for emphasis .

I[disksi_e]]

	

Items inside double square brackets arc
optional .

{ WHILE I UNTIL } Braces and a vertical bar indicate a mandatory
choice between two or more items . YOU mint
choose one of the items unless all of the items
also are enclosed in double s q uare brackets .

Ctrl key

	

Initial capital letters are used for the name,
keys and key sequences, such as Enter and
Ctrl+R . The key names used in this manual
correspond to the names on the IB .\I Personail
Computer keyboard . Other machines ma% a>e
different names .

Alt+FI

	

A plus (+) indicates a combination of keys . For
example, Alt+FI means to hold down the Alt
key while pressing the Fl key .

Down Arrow key

	

The cursor movement ("arrow") keys are called
direction key`. Individual direction keys are
referred to by the direction of the arro on the
key top (Left, Right, Up. or Down).

Gettii i Started

	

vii

Introduction

viii

	

Getting Staled

"defined term"

	

Quotation marks usually indicate a new term
defined in the text .

Video Graphics Array (VGA)

	

Acronyms are usually spelled out the first time
they are used .

Chapter 1
New Features

Microsoft BASIC combines powerful new language features with capacity, performance, and
usability enhancements to provide a high-productivity development system for professional
BASIC programmers . This chapter describes the new features for versions 7 .0 and 7 .1 . Chan-,
for version 7.1 are indicated by the words "Version 7 .1" in the left margin .

New Features in Version 7.1
Microsoft BASIC version 7 .1 extends BASIC's power under OS/?, improves its compatibility,
with other languages, and provides new language features :

•

	

BASIC's Indexed Sequential Access Method (ISAM) is now fully supported for

•

	

The Programmer's WorkBench (PWB) provides a sophisticated development environment
for mixed-language programming under DOS or OS/2 .

•

	

The CodeView debugger version 3 .0 contains many improvements to simplify the task of
debugging large BASIC and mixed-language programs under DOS or OS/2 .

•

	

QuickHelp provides access to the Microsoft Advisor Help system from the command line .

•

	

The new REDIM PRESERVE statement lets you change the size of an area\ without
erasing the data it contains .

•

	

BASIC now supports passing parameters by value within BASIC procedures and passim_
arrays containing fixed length strings as parameters .

•

	

BASIC is fully compatible with Microsoft C version 6 .0 .

The rest of this chapter discusses the features new to Microsoft BASIC versions 7 .0 and 7 .1 in
greater detai I .

Language Enhancements
Microsoft BASIC contains major language enhancements designed for business, scientific . rind
general-purpose BASIC programming .

uethn) Stalled

	

1

Chapter 1

2

	

Getting Started

Integrated ISAM
The Indexed Sequential Access Method package provides a fast and simple method for
accessing specific records in large and complex data files . Microsoft BASIC integrates all
ISAM statements and functions with the BASIC language . BASIC ISAM includes statements
for transaction processing and for data retrieval and manipulation .

Version 7.1 In version 7 .1 . ISAM statements and functions are supported for OS/2 as well as DOS .

Microsoft BASIC also includes several utilities for use with ISAM files created with BASIC :

•

	

ISAMCVT .EXE (DOS only) converts Btrieve and dBASE files for use with ISAM .

•

	

ISAMREPR .EXE repairs corrupted ISAM databases .

•

	

ISAMPACK .EXE compacts ISAM files to save disk space .

•

	

ISAMIO.EXE converts ASCII files to ISAM format and vice versa .

For more information about ISAM, see Chapter 10 . "Database Programming with ISAM .' in
the Pro,tiranmu'r's Guide .

DOS File Management
The DIR$ and CURDIR$ functions and the CHDRIVE statement make it easier to manage
DOS files from BASIC programs .

DIR$ is similar to the DOS DIR Command, except that the filenames are returned one at
a time . CURDIR$ returns the current directory specification, and CHDRIVE changes the
current drive .

Currency Data Type
The currency data type maintains to-the-penny precision while providing the speed of integer
math for programnling accounting tasks . Its internal representation as an integer gives this type
a signiiieant advantage in speed over the floating-point data type for operations such as addition
and subtraction . For more information about the currency data type, see Chapter 15,
"Optimihing Program Sire and Speed,'' in the Pro rwmtnler's Guide .

Procedure-Level Error Handling
Microsoft BASIC contains local error trapping and handling For procedures, making error,
handlin`I much More efficient . In previous versions of BASIC, error-handling routines existed
at the module level . When a handler was turned on, it was active for all procedures within the
module.

With Microsoft BASIC, you can create both module-level and procedure-level error handler . .
The same error can invoke different error-handling routines, depending on which procedure i,
running. For example, you may want to invoke different error-handling routines for ERR code
54, Bad File Mode, because the error has different meanings for different file operations. For
more information on error handling, see Chapter 8 . "Error Handling," in the Pro ru»7irre/
Guide .

Static Arrays in Records
In previous versions of BASIC, you could create user-defined data structures that contained
numeric and fixed-string data types by using the TYPE . . .END TYPE statements . No%~ you can
use static arrays in addition to numeric and string data types, which gives you more flexibility
in building data structures .

Preserve Data when Redimensioning an Array
Version 7.1 By adding the PRESERVE option to the REDIM statement, you can preserve the data that

exists in an array when changing its outer boundary . This simplifies the dynamic control of the
amount of memory consumed by an array. For details and an example . see the online Help on
the REDIM statement.

Improved Parameter Passing
Version 7.1 With previous versions of BASIC, you could emulate passing parameters by value by

surrounding the parameter with parentheses . Now you can use the BYVAL keyword in
DECLARE, SUB, and FUNCTION statements for BASIC procedures . For details on passing
parameters by value, see the online Help for the DECLARE, SUB, and FUNCTION
statements .

BASIC now also supports passing arrays containing fixed-length strings as parameters . For
more information, see the online Help for the SUB and FUNCTION statements .

Improved COM Support with ERDEV$ and ERDEV
With previous versions of BASIC, if you had a device timeout error, there was no \\a \ to find
out which device timed out, or which control line caused the timeout . With Microsoft BASIC .
information about the timeout is available through the ERDEV$ and ERDEV functions .
ERDEV$ indicates whether a timeout is occurring on the co111111unications port . ERDE\-
indicates the type of timeout error that occurred (that is, CTS, DSR, or DCD control-line
errors) . See the OPEN COM statement in the BASIC Lan~ua,>,'f' Rr/err ~r~ for more
information .

New Features

Gt'ttNlQ tit,Ntr'd

	

3

Chapter 1

4

Date/Time, Financial, and Format Add-On Libraries
With these new libraries, _you can use BASIC to perform spreadsheet-style calculations and
formatting . For example. you can compute the number of days between two dates by converting
the dates from nmonth-day-year format to number format, and then subtracting . You can use
financial functions to calculate double-declining balance depreciation, future value, net present
value, internal rate of return, and other common financial calculations . For more information
about Date/Time, Financial, and Format add-on libraries, see Part 2 of the BASIC Lan,~rra,c
Rc'f crc'nrc- .

Matrix Math Toolbox
The new Matrix Math toolbox contains sample BASIC code for several common matrix math
operations. including addition, subtraction, multiplication and division, matrix inversion,
determinant calculation, and solution of simultaneous equations using Gaussian elimination .
For more information about the Matrix Math toolbox, see Part 3 of the BASIC Lenr;ulit e
Refereii . e .

Presentation Graphics Toolbox
You can use the Presentation Graphics toolbox to display charts and graphs from your
programs . The Presentation Graphics toolbox includes procedures for pie charts, bar and
column charts . line graphs, and scatter diagrams . Figure 1 .1 shows an example of a column
chart created with this toolbox .

250

200

150-

too-

50-

0

Getting Started

Jan

	

Feb

	

Mar

	

Apr

	

May

	

Jun

	

Jly

	

Aug

	

Sep

	

Oct

	

Nov

	

Dec

Months

Figure 1.1 Presentation Graphics

Good Neighbor Grocery `
Orange Juice Sales

The toolbox also includes a set of special graphics fonts . For more information about
Presentation Graphics, see Chapter 6, "Presentation Graphics .'' in the Pr -~~~ranrntc r' Guide .

User Interface Toolbox
With the new user interface code samples, you can design your own user interface using
BASIC procedures. The code samples in this toolbox give you complete control of character-
based window interfaces . For example, you could write a BASIC program with multiple
windows, menu bars, dialog boxes, and mouse interaction . For more information about the ~'ver
Interface toolbox, see Part 3 of the BASIC Language Rcle'l ,elICC .

C Version 6.0 Compatibility
Version 7.1 BASIC incorporates the C version 6 .0 startup code . This makes BASIC fully compatible %~ ith

the latest version of C . However, this can cause problems for mixed-language programmers
who have earlier versions of C, FORTRAN, or Pascal . Compatible run-times for these
languages are available free from Microsoft . Contact Product Support Services for more
information .

Capacity and Performance Enhancements
Microsoft BASIC eliminates many of the capacity and performance barriers that formerly
limited the size and sophistication of BASIC applications .

Far String Support
In previous versions of BASIC, all variable-length string data was stored in near memory . This
relatively small portion of memory (64K maximum) also stores the rest of the simple
variables-integers, floating-point numbers and fixed strings, all constants . the stack, and some
run-time overhead . Even when the only variables you use are variable-length strings . \ our
maximum data storage is limited .

Microsoft BASIC supports "far strings ." which enable you to store variable-length string data
outside of near memory in multiple segments of far memory . This gives you a full 64K of strin~l
storage in the module level of the main module . plus several additional 64K blocks of storage .
depending on how you write your program . Removing variable-length strings from near
memory creates significantly more room for other simple variables . For more information on
using far strings, see Chapter 11, "Advanced String Storage," and Chapter 13 . "Mixed-
Language Programming with Far Strings," in the Pro ,'ranrnrcr's Guide .

New Features

Getting state"

	

5

Chapter 1

6

Overlay Support
With overlays, you can write and run programs up to almost 16 megabytes in size when
compiling and linking froiii the command line . In an overlaid version of a program, specified
parts of the program are only loaded if and when they are needed . Specifying overlays can be
useful if you have compiled a program that is too large to load in memory . For more
information about overlays, see Chapter 18, "Using LINK and LIB," in the Pmgrwn,n er's
G1 1 it /(, .

Improved Granularity
The extent to which BASIC run-tinge routines are divided into individually accessible pieces is
called "granularity ." With Microsoft BASIC's improved granularity, you can link with the
minimum amount of library code needed to produce stand-alone programs . This gives you
smaller compiled programs, saving disk space and memory . For more information, see
Chapter 15, "Optimizing Program Size and Speed," in the Pro,rannnler's Guide .

Optimized Code Generation
Optimized code generation automatically makes compiled BASIC programs smaller and faster .
Also . using a new compiler switch, you can tell the compiler to generate code for the 80286
(and later) microprocessor family, taking advantage of that family's machine instructions . For
more information on optimized code generation . see Chapter 15, "Optimizing Program Size and
Speed,' in the Pro,traniiuer' .v Guide .

Improved Alternate Math Package
For target systems without an 80 .x87 ninth coprocessor, the alternate math package gives
programs greatly improved speed . For example, if your application involves spreadsheet-style
math Without recursive calculations, using the alternate math package may give von a
noticeable performance increase . For more Information about the alternate Math package . see
Chapter 15 . "Optimizing Program Size and Speed," in the Pi t,,raminer's Guide .

Improved IEEE Math Coprocessor Emulation
For target systems with or without a math coprocessor, an improved coprocessor emulator gives
you faster high-precision calculations .

Improved Code Generation
Version 7.1 Relative lumps and short jumps to near targets are optimized, resulting in smaller, taster

prritraills. This improvement affects all control statements .

Getting Started

Environment and Usability Enhancements

New Features

Microsoft BASIC offers two sophisticated development environments : Microsoft QuickBASIC
Extended (QBX) and Microsoft Programmer's WorkBench (PWB) . Both provide the Poll mIIIgg
advanced features :

•

	

Integrated debugging capabilities within the environment and compatibility with CodeVic~,
version 3 .0 for debugging and optimizing executable programs at a variety of levels

•

	

Support for expanded memory specification (EMS 4 .0) to create large executable prOLram- .

•

	

Undo/Redo capabilities

•

	

Customizable menus and key assignments

•

	

Control of build options and target environment from the development environment

•

	

A comprehensive online Help system designed for professional progranllllers

In addition to QBX and PWB, BASIC now includes the QuickHelp environment for view ins
Microsoft Advisor online Help files .

The QuickBASIC Extended Environment
Microsoft QuickBASIC Extended (QBX) is an advanced development environment for
programmers who write most or all of their code in BASIC . It provides line-by-line syntay
checking and on-demand program execution without reconlpilin`` . QBX also provide, the
following key features :

•

	

QBX automatically uses expanded memory, if present, for any parts of your program
source code that are less than 16K in size. The View SUBs command now enables you to
determine whether a program unit (module-level code or procedure) \\ II I fit into expanded
memory .

•

	

Historical Undo/Redo conlnlands . You can use Undo to step back through your last 'rl
edits .

•

	

A customizable Utility menu . You can use the Utility menu to run DOS conulruld-line
programs or a custom editor, or for command-lint compiIing and o\ erla\ Iillklllg . YOU can
even assign each menu Iterll a shortcut key .

•

	

Customizable key assignments . If you prefer to use a set of editing' corlllllandk, other than
the QBX defaults, you can change your key file to one of those provided . or you can create
your own custom assignments .

•

	

Print to multiple printers or to a file .

•

	

Debug watch window capacity doubled (front S to I(0 expressions) .

•

	

Complete control of compiler switches for Compiling from the environment .

hOr inturnlation ran using QBX, see Chapter 1"tJsing QuickBASIC k\tended . . .

lic'ttr71t1 Sited

	

7

Chapter 1

The Programmer's WorkBench Environment
Version 7.1 Microsoft Programmer's WorkBench (PWB) is an advanced development environment for

progranlnlers who often work in languages other than BASIC or who want to create, build, and
debug their programs under OS/? . PWB also offers the following key features :

•

	

PWB runs in real or protected modes. so you can write BASIC programs under DOS or
OS/? .

•

	

You can write programs in any Microsoft professional-level language and mix languages,
arch as BASIC and C, within the environment .

•

	

The Source Browser allows you to search selected files, list references and definitions .
build a call tree and outline, and view a list of relationships among program symbols .

•

	

You can step through compiler errors and PWB will indicate where each error occurred in
the source code .

•

	

PWB and CodeView are integrated, so you can switch from one to the other without exiting
PWB .

•

	

Comprehensive Help is available on all command-line utilities and Microsoft languages
installed on your system .

For information on using PWB, see Chapter 4, "Using the Programmers WorkBench ." See the
PWB online Help for detailed information on performing tasks and customizing the
ell virorlrllent .

The Code View Debugger
Version 7.1 The CodeView debugger allows you to debug programs under DOS or OS/2 . This is especially

useful when you are using assembly language routines in a BASIC program . CodeView version
3 .0 offers the following new features :

•

	

Comprehensive online Help on how to use CodeView . Help is also available on any,
installed Microsoft language or utility from within CodeView .

•

	

Automatic use of extended and expanded memory . if available .

•

	

Full integration with PWB and compatibility with programs created in QBX .

For introductory information on how to debug programs using this environment, see Chapter 5,
"using The CodeView Debugger ." For detailed information on how to perform tasks in
CodeView and for information on how CodeView evaluates BASIC expressions, see the
CodeView online Help .

QuickHelp
Version 7 .1 Microsoft QuickHclp reads Microsoft Advisor online Help files under DOS or OS/2 . This

provides you with an easy way to get Help on the conlmand-line utilities and development
environments without loading QBX, PWB, or CodeView .

8

	

Getting Started

New Feature:

If you are using OS/2 or Microsoft Windows'", you can run Quick Help in one window and do
your programming in another. This can he more convenient than using Help in the
programming environment, which obscures part of the program you are working on .

For more information on using QuickHelp, see Chapter 6, "Using Help ."

GetbnL) Started

	

9

Chapter 2
Setup

System Requirements
Microsoft BASIC requires the following minimum configuration :
•

	

An IBM Personal Computer XT or compatible running DOS version 3 .0 or later, or OS/2
version 1 .1 or later .

•

	

A hard disk drive .

•

	

A 1 .2M 5 .25-inch floppy disk drive . (360K and 720K disk versions of this product are
available from Microsoft . Contact Product Support Services for more information .

•

	

640K of available memory .

Microsoft BASIC supports the Microsoft Mouse and any other pointing devices fully
compatible with the Microsoft Mouse .

Setup Overview
Your Microsoft BASIC package includes the SETUP .EXE file on Disk I (Setup) . You coin u-c
Setup in one of two ways :

•

	

Install all the files you need to run BASIC, including the QBX environment, mixed-
language development tools, utilities, and libraries .

•

	

Selectively install files . Typically, these might include libraries or tools you did not chop>e
to install the first time you used Setup .

Setup offers you a series of choices, letting you specify where to install the files and what
features and utilities you want to install . To conserve disk space, you may choose not to use all
of BASIC's features at first . You can later run Setup to selectively install features you decide to
add .

Important You must run Setup to use Microsoft BASIC successfully . Setup decompresses files on the
distribution disks (using UNPACK .EXE), builds libraries, and performs other operations to
give you a usable BASIC environment . You cannot run BASIC by merely copying files from
the distribution disks .

Gettuig Started

	

11

Chapter 2

Running Setup

12

Setup contains information and Help screens to guide you through the setup process . The Setup
Main menu points you to the various Setup screens where you can :

•

	

Specify paths and directories for installed files .

•

	

Specify libraries and run-time modules .

•

	

Specify ISAM support .

•

	

Specify files to install (for selective installation of specific files or parts of Microsoft
BASIC) .

To run Setup, place Disk I (Setup) in disk drive A :, type a : setup at the system prompt, and
then follow the instructions on your screen . Before running Setup. however, you should keel)
the following points in mind .

Time Required to Install
Set aside an uninterrupted block of time . You can exit Setup if you need to . but it will not retain
any of the options you selected . Installing Microsoft BASIC requires anywhere from 30
minutes to three hours. depending on the speed of your processor, available disk space . and the
options you chose. For best performance, you should remove any terminate-and-stay-resident
(TSR) programs from memory before running Setup .

Setup requires less time if you start it with the /BATCH option, as follows :

It You use /BATCH, Setup will operate the same way that it does Without the option, with one
exception. Instead of building BASIC run-times and libraries automatically, SETUP /BATCH
creates a batch file named BUILD.BAT. You must run this batch file from the command line to
complete the installation process .

Amount of Disk Space Required
The amount of disk space required varies depending on which features you choose to install .
However, Setup determines the exact amount of space you need before proceeding with
installation . It then checks available disk space . If you lack sufficient space, Setup prompts you
to change the number of files to install . If you do not have sufficient disk space and you choose
to continue, the installation may not he successful .

Custom or Default Configuration
The first time you install BASIC, You May not be sure which features you want 10 use . If tills is
the case, you may want to Install with tile default settings . You can always change these
settings by running Setup again . To install the default configuration, choose Install with Current
Options trolls the Setup Main menu, as shown in Figure 2 . I , and then follow tile Instructions Oil

Your screen .

Getting Started

To : Press :

Specify Paths and Directories
Specify Libraries and Run-Time Modules
Specify ISAM Support
Specify Files to Install
Install with Current Options

	

I - -
Exit Setup x

Figure 2.1 Install with Current Options

Setup Will Not Install Until You Tell It To
If you want to install only a few files or you want to change the configuration, you can browse
through the various Setup screens and alter settings . You can spend as much time as you want :
Setup takes no action until you choose Install with Current Options from the Setup Main menu .

Files Installed
During installation, Setup places a number of EXE, .LIB and OBJ files in the directories you
specify, as well as documentation and sample-code files . Note that Setup may replace existing
files . Therefore, it is a good idea to have Setup install files only to new directories . empty
directories, or directories containing software you want to update .

Some of the OBJ files are stub files . Depending on how you want to use BASIC . you might
want to delete these files after installation . Before doing so, however, you should read the
section "How Setup Uses Stub Files" later in this chapter .

After Running Setup

Press I to install default configuration

After you install Microsoft BASIC, you may want to do the following tasks :

•

	

Create or modify the TOOLS.INI file

•

	

Modify your environment variables

•

	

Unpack individual files from the distribution disks

Creating or Modifying TOOLS . INI
Programmer's WorkBench . CodeView, QuickHelp, and NMAKE, all included \yith :Microsoft
BASIC, use the TOOLS .INI file for initialization inforlllation . Setup installs a file named
TOOLS .PRE that contains preliminary settings for these applications . Setup places
TOOLS .PRE in the \BC7\BINB directory by default .

If you don't have an existing TOOLS .INI file, you can rename TOOLS .PRE and place it in a
directory that is indicated by your INIT environment variable .

If you already have a TOOLS .INI file and you have not previously installed any of these
applications, you can append TOOLS .PRE to your existing TOOLS .INI file . For example :

:11111'- ,COPY TOOLS . INI + \BC7\BINB\TOOLS .PRE

Setup

Getting Started

	

13

Chapter 2

14

If you have previously installed one or more of the applications mentioned above, you may
want to selectively combine your existing TOOLS .INI settings with the additional settings in
TOOLS.PRE .

The TOOLS.PRE file contains information about modifying the initial settings for each of the
applications . Online Help is also available from within PWB, CodeView, and QuickHelp on the
TOOLS .INI topic .

Modifying Your Environment Variables
Setup creates two files that you can use to change your environment variables :
NEW-VARS .BAT for DOS, and NEW-VARS .CMD for OS/2 . You can run these files from the
command line, or you can append them to your AUTOEXEC .BAT file (DOS) or your
CONFIG .SYS file (OS/2) .

If you are installing for OS/2, you should also modify the LIBPATH line in your CONFIG .SYS
file to include the directory where Setup installed BASIC's dynamic-link libraries (DLLs) . By
default, Setup places these files in the \BC7\BINP directory . Since LIBPATH is not part of the
environment, NEW-VARS .CMD cannot modify it. If you change LIBPATH, you will have to
restart your system in order for it to take effect .

Unpacking Individual Files
The files provided on the Microsoft BASIC distribution disks are compressed to conserve
space . A dollar sign (S) is added to the file extension to show that these files must be unpacked
before they can be used . The file PACKING .LST contains a table showing how the modified
file extensions correspond to the unpacked files .

Setup automatically unpacks and installs all of the files you need to use the configuration you
specified from the Setup menus . You can unpack individual files after Setup in order to modify
your installation without rerunning Setup, to restore a file that was deleted, or to provide special
support for mixed-language programming with Microsoft C version 6 .0 .

To unpack a file from a distribution disk, use the following syntax :

UNPACK pat -kcd-filc'natne wrhacked-filename

For example, to unpack the PWB .HLP file, insert the disk containing tile file in drive A : and
type :

UNPACK A :PWB .HL$ PWB .HLP

To find a particular file on the distribution disks, look at the file PACKING .LST on Disk 1 .

Special Instructions for Microsoft C Users
If you have installed Microsoft C version 6 .0, you should replace the PWB executable files and
language extensions provided with C with the ones provided with this version of BASIC .

Getting Started

BASIC includes a later version of these files that supports the use of BASIC and C together in
mixed-language programs .

The PWB extensions for the C language, PWBC.MXT and PWBC.PXT, are provided with
BASIC, but are not installed by Setup . You should unpack these files individually from the
BASIC distribution disks and use them to replace the C-language extensions provided with C
version 6 .0 .

How Setup Uses Stub Files
This section explains how you can produce smaller stand-alone programs using stub tiles . It
you are eager to use BASIC, you can skip this section for now and read it later .

A "stub file" replaces a BASIC library module with a module that performs little or no action .
Stub files typically contain a small amount of code .

The advantage of stub files is that if you know that you will never use a certain feature in your'
program (such as support for VGA screen modes), you can use the stub file to eliminate cock
for that feature . The result is that your programs require less memory and disk space .

Stub files can be used for BASIC programs that use the BASIC run-time (BRT) module and for
BASIC stand-alone executable files .

Stub Files and the BRT Module
BASIC programs can use the BRT module to support common routines . The use of the BRT
module saves disk space by eliminating the need to add library routines to every executable file .

Setup uses stub files to build the BRT module . It uses a different stub file (see the follow in_
sections) for each feature you decide not to support .

Once installation is complete, most stub files have no further effect on the BRT module . Y*o_ou

can delete them unless you plan to create stand-alone executable files, as described in the nest
section .

Stub Files and Stand-Alone Programs
You can produce stand-alone programs with the BASIC compiler by using the /0 Option . The
advantage of stand-alone programs is that the BRT module need not be present for the program
to run

Do not delete stub files if you want to produce stand-alone programs that use the smallest
amount of memory . When you create a stand-alone program, you can specify stub files on the
LINK command line . The effect is to cancel or reduce support for a feature and thus reduce
executable size .

For more information on stub files, see Chapter 15, "Optimizing Program Size and Speed ." and
Chapter 18 . "Using LINK and LIB," in the Prr~ N ~~rmnrcr's Guit/c .

Setup

Getting Started

	

15

Chapter 2

16

Graphics Support Stub Files
The following list summarizes stub files that correspond to items in the second Specify
Libraries and Run-Tine Modules screen . Screen I/O and Graphics Support . Setup uses a
designated stub file to build the BRT module if the corresponding menu item is turned off.

To link with
Turn this option off

	

this stub file

	

Having this effect

Graphic Screen Mode
Support

CGA Graphics
SCREEN Modes 1-2

Hercules Graphics
SCREEN Mode 3

Olivetti Graphics
SCREEN Mode 4

EGA Graphics
SCREEN Modes 7-10

VGA Graphics
SCREEN Modes 11-12

Miscellaneous Support Stub Files

Turn this option off

COW Device OPEN
and 1/O

Getting Stalled

Full Ctrl-Character

	

TSCNIOsni .OBJ

	

Limits the program to text-only
Text 1/O

	

screen 1/0 with no support for
special treatment of control
characters . Removes support
for all screen modes other than

NOGRAPH.OBJ

NOCGA.OBJ

NOHERC.OBJ

NOOGA.OBJ

NOEGA.OBJ

NOVGA .OBJ

To link with
this stub file

NOCOM .OBJ

0 .

Removes support for all
graphics statements and
SCREEN modes other than 0 .

Removes support for SCREEN
modes I and 2 .

Removes support for SCREEN
mode 3 .

Removes support for SCREEN
mode 4 .

Removes support for SCREEN
modes 7-10.

Removes Support for SCREEN
modes 11-12 .

The following list summarizes stub files that correspond to items in the third Specify Libraries
and Run-Time Modules screen :

Having this effect

Removes support for COM
device filenames . Normally,
LINK includes support for
COM port communication
when an OPEN statement uses
a filename that is either a string
variable or starts with "COM .''

LPTn Device OPEN
and 1/O

NOLPT .OBJ

Setup

Removes support for LPT
device filenames . Normally,
LINK includes support for LVT
port communication when an
OPEN statement uses a
filename that is either a string
variable or starts with

INPUT Floating-Point

	

NOFLTIN.OBJ

	

Allows programs to contain
Values

	

INPUT . VAL, and READ
statements without linking in
floating-point support . Use of
this stub file assumes You will
not input floating-point
constants .

Transcendental Math

	

NOTRNEMm .LIB

	

Removes support for
transcendental functions . vA hicl -i
include trigonometric
functions, exponential
functions . and the following :
the CIRCLE statement with a
start or stop value. and the
DRAW statement with A or T
commands .

EMS Support for

	

NOEMS.OBJ

	

Prevents a program linked for
Overlays

	

overlays from using EMS
memory. The program will he
forced to swap to disk . This file
is not built into the BRT
module, but must be linked
with your program's object
files when creating the
executable file .

EVENT Trapping

	

NOEVENT.OBJ

	

Removes support for EVENT
trapping .

Full-Power INPUT

	

NOEDIT.OBJ

	

Limits editing when a user
Editor

	

enters data in response to an
INPUT statement. The user
will only be able to use
Backspace to change entries .

Detailed Error Messages

	

SMALLERR .OBJ

	

Reduces length of run-time
error messages .

Getting Started

	

17

Chapter 2

18

Other Special Files Installed by Setup
In addition to stub files, Setup may install two other special files, depending on the
configuration chosen . Both these files correspond to options in the third Specify Libraries and
Run-Time Modules screen . As with stub files, Setup builds these files directly into the BRT
module, but unlike stub files, you must turn the corresponding menu items on in order to link
with the files . If you want to use them in a stand-alone program, include them on the command
line when you link the program .

To link
Turn this option on

	

with this file

	

Having this effect

Math Coprocessor

	

87.LIB

	

Provides most direct support for
Required

	

machines that have an 8087-family
coprocessor installed . This option also
removes software coprocessor
emulation, so that programs with
floating-point calculations can only run
on computers with a coprocessor .

Overlays in DOS 2 .1

	

OVLDOS2I .OBJ

	

Required for a program with overlays to
work under DOS 2 . 1 .

Getting Started

For information on

ISAM

Near and far strings

Alternate and emulator
math

Overlays

Compiler options

Stub files

See

Where to Go If You Need Additional Help

Progranmner's Guide, Chapter 10, "Database Programming vvith
ISAM"

Setup

If you need additional help with any of the options in the Setup program, you can use the
following table to locate information in the printed documentation . If you just need a quick
overview of the new features in Microsoft BASIC. be sure to read Chapter 1, "Ne~~ Features ."
if you haven't already done so .

Programmer's Guide, Chapter 11, "Advanced String Storage'

Progranmner's Guide, Chapter 15, "Optimizing Program Size and
Speed," and Chapter 16, "Compiling with BC"

Programmer's Guide, Chapter 18 . "Using LINK and LIB -

Programmer's Guide . Chapter 16, "Compiling with BC"

Progranmner's Guide, Chapter 15, "Optimizing Program Size and
Speed," and Chapter 18 . "Using LINK and LIB -

Add-on libraries

	

BASIC Language Reference, Part

Toolboxes

	

BASIC Language Reference, Part 3, and Pro rammer' c Giiidt ,

Chapter 6, "Presentation Graphics"

Gettino Started

	

19

Chapter 3
Using QuickBASIC Extended

Running QBX

The QuickBASIC Extended (QBX) environment is a powerful tool for developing BASIC
applications under DOS . This chapter introduces the QBX environment and covers the
following information to get you started :

•

	

Starting QBX and using the default editing and command keys .

•

	

Creating and moving around in a program .

•

	

Compiling programs from within QBX .

•

	

Using symbol Help, watches, watchpoints, breakpoints, and Code View support to locate
and resolve errors in your program .

•

	

Adding items to the menu bar and changing the default editing and command key
assignments .

•

	

Using the QBX command-line syntax .

To start QBX, type the following at the system prompt :

QBX

Figure 3 .1 shows the QBX environment .

G?ttuta St,~rted

	

21

Chapter 3

22

File Edit View Search Run Debug Calls Utility Options
Untitled

Help
ItH

t
I

1

Immediate

Microsoft (R) QuickBASIC Extended v7 .1 (C) Copyright Microsoft Corp, 1982-1998

Figure 3.1. The QBX Environment

All environment tasks within QBX can be accomplished by using either the mouse or the
keyboard . The following table lists commonly used key combinations by category and task .

Category

Edit

Getting Started

To do this

Open a program

Save a program

Select text

Copy selected text

Cut selected text

Cut a single line

Paste copied or cut text

Search for selected text

Repeat last search

Press

Alt+F, 0

Alt+F, S

Shift+direction key

Ctrl+fns

Shift+Del

Ctrl+Y

Shift+Ins

Ctrl+/

F3

Debug

	

Execute program

	

Shift+F5

Execute to cursor position

	

F7

Execute next statement

	

FK

Execute next procedure

	

F I O

Continue execution

	

F5

Add instant watch

	

Shift+F9

Set/clear a breakpoint

	

F9

View/Windows

	

Next window

	

F6

Previous window

	

Shift+F6

View a SUB

	

F2

View the next SUB

	

Shift+F?

Display/hide output screen F4

Help

	

Help on a topic

	

Fl

Help on using Help

	

Shift+F l

Exit Help

	

Esc

Redisplay last Help

	

Alt+FI

Writing a Program

Using OulckBASIC Extended

After you start QBX, you can immediately begin writing a program . As you enter BASIC
functions and statements, QBX interprets them and checks the syntax of each line . If you make
a syntax error . QBX displays an error message dialog box and you must choose OK or pre-
Esc to continue . QBX only checks for errors in syntax : to detect errors in logic, you mint run
your program . For example, type the followink' :

Now = TIME$

Press F5 to execute the program . QBX highlights TIME$ and displays a "Type nmisniatch"
error. Choose OK and correct the line to read :

Now$ = TIME$

Now the program will execute without an error .

QBX organizes your program by separating different procedure, (SUB,, and FUNCTION,
When you save your program, QBX automatically adds DECLARE statement . as needed . For
example, type the following :

SUB PrintTime

tiettina Started

	

23

Chapter 3

24

When you press Enter, QBX creates a new procedure with SUB and END SUB statements in
the current window as follows :

SLB PrintTime

To see the organization of the program, press F2 . QBX displays the View SUBs dialog box .
This dialog box lets you move between procedures and the main module of your program . Press
Esc to return to the PrintTime procedure .

Add the following infinite loop between the SUB and END SUB statements :

DO
CLS
LOCATE 2, 1
PRINT "The time is :
SLEEP 1

LOOP

Getting Started

TIME$;

Now choose Split from the View menu to open another window . Display the main module in
the top window by typing Shift+F2 (View Next SUB) . After the last statement in the main
module, type :

CALL PrintTime

Run the program by pressing F5 .

Press Ctrl+Break to interrupt the infinite loop and return to QBX . QBX highlights the last
instruction executed (in this case, LOOP) .

To save the program you just created :

1 . From the File menu, choose Save .

2. Type the filename TIME.BAS, select Text Format, and press Enter .
QBX saves the file as text . Text format files can be used by PWB, CodeView, and other
tools . Binary format files can only be used by QBX and the BASIC Compiler .

Exit QBX by choosing Exit from the File menu . You can view the file you just saved b_v typing
the following command from the command line :

TYPE TIME .BAS

The system displays the file as follows :

DECLARE SUB PrintTime O
Now$ = TIME$
CALL PrintTime

SUB PrintTime
DO

LOCATE
PRINT "The time is :

	

+ TIME$
SLEEP 1

LOOP
END SUB

Notice that QBX adds a DECLARE statement and puts procedures after the main module ire
the file when it saves the file .

Other Statements Added by QBX
In addition to the DECLARE statement, QBX automatically adds a DEFtvpe statement to
procedures under certain conditions . For example, if you start your program with a
DEFINT A-Z statement, QBX adds a copy of that statement to the beginning of each new
procedure you create .

If your program has existing procedures when you add a DEFt_vpe statement to the main
(calling) module, those procedures are not changed . Only new procedures get the automatic
DEFtvpe statements .

Since the default data type in BASIC is single-precision, QBX will add a DEFSNG statement
to any previously existing procedures that did not already have a DEFtvpe statement . These
statements can only be seen by saving the file as text and viewing it outside QBX . For this
reason, it is a good idea to start your program with a DEFtvpe statement .

Using the Immediate Window
The Immediate window at the bottom of the screen in QBX is a useful tool for executing a few
lines of BASIC code without running the currently loaded program . Each line that you type in
the Immediate window is executed when you press Enter . For example :

Run QBX . Press F6 to move the cursor to the Immediate window, and type :

CLS
PRINT "Today's date is : " + DATE$

Each time you press Enter at the end of a line, QBX executes that line of code and displays the
output screen . You can cut lines from you, - program and paste them into the Immediate
window . You can then scroll to the beginning of the pasted line and execute them one at a time
by pressing Enter after each .

Using OuickBASIC Extended

t1ettrna Stayed

	

25

Chapter 3

26

Lines typed in the Immediate window are not saved with your program . When you exit QBX,
the Immediate window is cleared .

Using Quick Libraries

QBX uses special-format libraries called Quick libraries to make common routines available
within the environment . To use a Quick library, you must specify it with the /L option when
you start QBX . For example :

rB ! L CHRTBEF R . QLB

This command line starts QBX and loads the Presentation Graphics Quick library . The
Presentation Graphics routines will be available to programs as you work in the environment .

For more information on Quick libraries, see Chapter 19, "Creating and Using Quick
Libraries ." in the Programmer's Guide.

Quick libraries created for QuickBASIC version 4 .5 or earlier must be recreated from the
original source code, and non-BASIC routines included in Quick libraries may need rewriting
or relinking . For programming considerations when writing Quick libraries and instructions on
creating Quick libraries, see Chapter 19 . "Creating and Using Quick Libraries ." in the
Pro,-rununer's Guide .

Compiling a Program
To compile a program from QBX, load a BASIC source file and choose Make EXE from the
Run menu . Figure 3 .2 shows the Make EXE File dialog box that QBX displays .

Speed
(•) 80x87 or Emulator Math /FPi
() Alternate Math

	

/FPa
[I Code Generation for 286 /G2
[XI Quick Call Optimization /Ot

Additional Options :

Make EXE File

EXE File Name :

EXE Type
(•) Stand-Alone EXE

	

/0
EXE Requiring BRT Module

TEST .EXE

< Make EXE >

	

< Make EXE and Exit >

Figure 3.2 Make EXE File Dialog Box

Getting Started

arge

	

nuironmen
(•) DOS or OS/2 Real Mode
() OS/2 Protected Mode

/Lr
/Lp

Size/Capacity
() Far Strings
(•) Near Strings
I I Disable String Compression /S

Debug
I I Run-Time Error Checking

	

/D
f I CodeView Information

	

/Zi

< Cancel >

/Fs

< Help >

By default, QBX uses the compiler options that cause your compiled program to run the way
that it is interpreted within QBX . If a Quick library is loaded, QBX uses /O, /Ot, /Fs . /Lr, /FP1 .
/T. and /C:512 by default . If a Quick library is not loaded. QBX uses /0 . /Ot . /Lr. /FPa . /T. and
/C:512 . For descriptions of the BASIC Compiler options, see online Help or - Chapter 16,
"Compiling with BC." in the Programmer's Guide .

To change these defaults, you can select any of the displayed compiler options or you can type
additional options in the Additional Options field .

When you select Make EXE from the Make EXE File dialog box, QBX shells to DOS and runs
the BASIC Compiler and LINK to build the executable file . If you have a Quick library loaded .
QBX links your program with the object module library (.LIB) with the same base name as the
loaded Quick library (.QLB) .

If an error occurs when compiling or linking, the build halts and the error is displayed : \ ou
press any key to return to QBX .

If the build is successful, you are returned to QBX .

Debugging a Program
To help locate errors in program logic, QBX provides the following features :

•

	

Symbol Help

•

	

Watches

•

	

Watchpoints

•

	

Breakpoints

•

	

CodeView support

Symbol Help
When you ask for Help on a symbol, QBX displays a schematic of where and how that symhol
is used in your program . Figure 3 .3 shows the Help screen that is displayed when you ask for
Help on the Answer symbol in the BOOKLOOK .BAS program .

Using OuickBASIC Extended

Getting Started

	

27

Chapter 3

28

File Edit View Search Run Debug Calls Utility Options
HELP : answer

answer is a symbol that is used in your program as follows :

C :\BC7\SRC\BOOHLOOH .BAS
variable of type : INTEGER

FUNCTION AddOne
parameter of type : INTEGER

SUB CheckPosition
parameter of type : INTEGER

I
FUNCTION Get Input
variable of type : STRING

I
FUNCTION HighXeys
parameter of type : STRING

r C :\BC7\SRC\BOOHMOD2 .BAS	
BOOHLOOH .BAS	 i4--

IF answer < UNDO THEN

	

' Excludes UNDOALL & INVALIDXEY too
Immediate	

<Shift+FI=HeIp> <F6=Window> <F2=Subs> <F5=Run> <FB=Step>

	

00077 :011

Figure 3.3 Symbol Help

Symbol Help is useful for resolving type mismatch errors and duplicate symbol names . Getting
Help on a symbol makes it easy to determine a symbol's data type and the procedures in which
it is used .

Help

It'-

-'S

Watches
Watches let you observe the value of an expression as your program executes. This is especially
helpful when your program yields unexpected results . Placing a watch on an expression and
stepping through the program can help you locate where the problem is occurring .

To add a watch :

1 . Select the expression you want to observe .

2. From the Debug menu, choose Add Watch .
The expression's name and current value are displayed in a one-line window immediately
below the menu bar .

As you run your program, QBX updates the value in the Watch window whenever the value of
the expression changes . For example, set a watch on N` in the following lines of code :

F" -)P II`'- = U t- c- , 1U . TE1= 5

IJEiYI' II

Step through the procedure by pressing FX five times . The Value of N' displayed in the Watch
window changes from O to 5 to 10 .

Getting Started

Using OuickBASIC Extended

You can set an instant watch to view the current value of an expression without addin` , a vti :.Itch .
An instant watch shows only the current value of the expression .

To set an instant watch :

1 . Select the expression to view .

2 . From the Debug menu, choose Instant Watch .
The current value of the expression is displayed in a dialog box .

3 . Choose Cancel to exit the dialog box without adding a watch or press Enter to add a vvatehh
for the expression .

To remove a watch, choose Delete Watch from the Debug menu, then select the watch to
remove .

To remove all watches, choose Delete All Watch from the Debug menu .

Watchpoints and Breakpoints
"Watchpoints" are conditional statements that stop program execution when an expre' ion i1~
true (nonzero). "Breakpoints" are markers that stop program execution at a fixed location in the
program. Watchpoints and breakpoints make it easier to get to a specific point in the logic or
structure of the program while debugging .

To set a watchpoint :

1 . Select the expression to watch .

2 . From the Debug menu, choose Watchpoint .
When you run the program by pressing F5 . QBX will halt the program and take you to the
current statement as soon as the value of the expression becomes nonzero .

To remove a watchpoint :

1 . From the Debug menu, choose Delete Watch .

2 . Select the watchpoint to remove and press Enter .

To set a breakpoint :

1 . Place the cursor on a line of code where you want the program to Stop executing .

2 . From the Debug menu, choose Toggle Breakpoint .
When you run the program by pressing F5, QBX will halt the program as Soon as it reaches
line of code with the breakpoint .

To remove a breakpoint . place the cursor on the line with the breakpoint and choose Toggle
Breakpoint from the Debug menu .

hattrng Startea

	

29

Chapter 3

30

Code View Support
To use CodeView with programs created in QBX . you must save the source file in text format .
CodeView cannot interpret files saved in QBX binary format .

After saving your program, compile it specifying the Code View option (/Zi or /Zd) . You can
then load the file into Code View from the command line . For information on getting started
with CodeView, see Chapter 5 . "Using CodeView ." For detailed information about the
CodeView environment and how expressions are evaluated in Code View . see the CodeView
online Help .

Customizing the Environment
You can add items to the menu bar and remap key assignments within the QBX environment .

Adding Items to the Menu Bar
To add an item to the menu bar :

1 . From the Utility menu, choose Customize Menu .

I Select Add from the Customize Menu dialog box .

3 . Type the appropriate information in the displayed fields, and choose OK . For information
about the field in the Customize Menu dialog box, press Fl .

The new item will appear on the Utility menu .

Remapping Key Assignments
The default QBX editing and command keys can be modified by loading one of the following
files with the /K : option when you start QBX :

Load this file

	

To change settings to those for this editor

ME.KEY

	

Microsoft Editor

BRIEF.KEY

	

BRIEF

EPSILON .KEY

	

Epsilon

QBX.KEY

	

QBX

For example, to change the default settings to those of the Microsoft Editor, start QBX with the
following command line :

QBX /k :ME .KEY

When you change the default key settings, the change is saved in QBX . INI and those settings
become the new default .

Getting Started

You can further customize these key assignments by using the MKKEY utility as follc;w1, :

1 . Decode the key assignment file . For example :
MKKEY -c ba -i QBX{ .KEY

	

MYKEY . T XT

2 . Edit the decoded file (in this case, MYKEY .TXT) .

3 . Encode the modified key assignment file . For example :
MKKEY

	

ab -_ MYKE` . T ::T

	

MYF E'1 . _ ~Y

4. Load the new key assignment file in QBX . For example :
:MYKEY .KEY

For more information on customizing key assignments, see the online Help topic "Confi`Turin_
Keys" from the Help table of contents in QBX . For more information about MKKEY . 'cc
Appendix C in the BASIC Language Reference .

Controlling the Environment

Using QuickBASIC Extended

You can control various aspects of the environment by .y using the QBX coniniand-line opt'
The QBX command line has the following syntax :

QBX I[u/)tionsfl /)ro,t'runurcmre]I [j/CMD stringf

Option

	

Short description

/AH

	

Allows dynamic arrays of records, fixed-length string . and
numeric data to be larger than 64K each .

/B

	

Displays QBX in black and white .

IC : buffersi_e

	

For use with the OPEN COM statement . Sets the si7C of the buffer
receiving data with an asynchronous conuniunications card . The
default is /C :512 .

/Ea

	

Allows arrays in expanded memory . Do not use /Ea vv ith the Es
option .

/E :n

	

Limits the amount of expanded memory reserved for QB\ usc . It
/E:n is not specified, all available expanded memory may he used .

/Es

	

Shares expanded nlenlor_y between QBX Quick library and rli\ed-
lan`rua`ge routines that make use of expanded memor\ .

/G Sets QBX to update a CGA screen as Lluickly as possible .

/H Displays the highest resolution possible on your hard~yare .

/K : IIkev/i/ell

	

Specifies a user-configurable key file to be loaded Into QBX .

/L II /ihrm .viianiell

	

Loads a Quick library . If lihrarv'ltunuc is not specrfied, the default
Quick Iibrarv (QBN .QLB) is loaded .

liettrnq Slat, d

	

31

Chapter 3

32

/MBF

/Nofrills

/NOHI

/CMD shrill,,

Complete descriptions
in the BASIC Lcnlsiiaec Reference .

Getting Started

Causes the QBX conversion functions to treat IEEE-format
numbers as Microsoft Binary format numbers .

Makes additional memory available for program use by reducing
the functionality of the environment .

Allows the use of a monitor that does not support high intensity .
Not for use with COMPAQ laptop computers .

Passes string to the COMMAND$ function . This option must be
the last option on the line .

of the QBX options are available through online Help or in Appendix C

Chapter 4
Using Programmer's WorkBench

The Programmer's WorkBench (PWB) is an advanced development environment that feature, a

powerful editor and integrates the compiler, LINK, NMAKE, and the CodeView debuggger .
PWB is intended for tasks, such as developing under OS/?, that are not supported by QBX .
Unlike QBX, PWB does not interpret BASIC code . This means that some features available in
QBX, such as the Immediate window and executing a program line-by-line . are not available .
In PWB, you must use CodeView to debug programs .

This chapter explains how to perform the following tasks :

•

	

Starting PWB and using keyboard commands .

•

	

Loading and saving a file, setting or clearing a program list, and using special feature
(such as marks and anchors) to help you write and modify' your programs .

•

	

Selecting build options and creating an executable file .

•

	

Preparing a file for debugging, viewing compiler errors, using the source brow ser . and
invoking CodeView .

•

	

Changing the default settings and key assignments, creating macros, and reducing the time
it takes PWB to load .

•

	

Using the PWB command-line syntax .

Mete

	

Setup installs PWB only if you choose to install mixed-language tools from the Specify File, to
Install menu during Setup . If you did not choose mixed-language tools and you wish to a<e
PWB, you should run Setup again with the mixed-language tools option chosen .

hethatj St fed

	

33

Chapter 4

Running PWB

34

	

Getting Started

To start PWB for the first time, type :

PWB

Figure 4 .1 shows the PWB environment .

File Edit View Search Make Run Options Browse

	

Help
<UNTITLED>	 ~tI

t
I

1

<General Help> <F1=Help> <Alt=Menu>

	

pseudo

	

00001 .001

Figure 4.1 The PWB Environment

PWB includes extensive online Help . If you request Help and get an error message indicating
that no Help files were open or that they could not be found, check your HELPFILES
environment variable . HELPFILES can he set by running NEW-VARS .BAT (DOS) or
NEW-VARS .CMD (OS/2) from the command line before starting PWB . HELPFILES can also
be set from within PWB by choosing Environment from the Options menu . If you set
HELPFILES from within PWB, that setting will not have an effect in CodeView .

l

Category

Edit

File operations

Debug/Browse

Windows

To do this

Select text

Copy selected text

Cut selected text

Cut a single line

Paste copied or cut text

Undo previous edit

Redo edit

Search forward

Search backward

Next window

Previous window

Resize a window

Maximize a window

Within PWB, environment tasks can be accomplished by using either the mouse or the
keyboard. The following table lists commonly used default key combinations by cateeorvv and
task :

Open a program

Save a program

Exit (save changes)

Quit (abandon changes)

Refresh (abandon chan(,es)

Load previous file

Shell to system

Next definition/reference

Previous definition/reference

Next build error

Previous build error

Press

Shift+direction key

Ctrl+lns

Shift+Del

Ctrl+Y

Shift+Ins

Alt+Backspace

Ctrl+Backspace

F3

F4

Alt+F, 0

Shift+F?

Alt+F4

F9, F8

Shift+F7

F?

Shift+F9

Ctrl+N um+

Ctrl+Num-

Shift+F3

Shift+F4

F6

Shift+F6

Ctrl+F8
Ctrl+F 10

Using Programmer's WorkBench

Getting started 35

Chapter 4

Help

	

Get Help on a topic

	

F1

View table of contents

	

Shift+Fl

Exit Help

	

Esc

Redisplay last Help

	

Alt+Fl

Writing a Program

36

After you start PWB . you can immediately begin writing source code in the window that
appears . PWB supports programming in BASIC, C, and other Microsoft languages . Unlike
QBX . PWB does not interpret your program as you write it . Also unlike QBX, PWB does not
check your BASIC syntax or automatically add DECLARE statements as you write your
program . To check syntax in PWB, you must compile your program and view the compile
results. For more information on how to do this, see the sections "Compiling and Linking a
Program" and "Debugging a Program" later in this chapter .

Loading and Saving a File
To load a file in PWB, you can either type the filename on the command line when you start
PWB or choose Open from the File menu within PWB .

If you are planning to use PWB in combination with QBX, you must save your source files in
text format from QBX before you try to load them in PWB . PWB cannot use files saved in
QBX binary format .

To save a file, choose Save from the File menu .

PWB maintains a history of the files you have opened, which is displayed at the bottom of the
File menu . To return to a file displayed in this list, choose its name from the File Menu . Figure
4.2 shows the File menu with several files in history .

Getting Started

File

File History

Figure 4 .2 File History on the File Menu

When you edit a file and then exit PWB, the environment saves a list of the files you worked on
in a special file named CURRENT .STS . PWB creates CURRENT .STS in the first directory
indicated by your INIT environment variable . The next time you run PWB . i t automatically
opens the last file you worked on unless you explicitly specify a filename on the command line
or use the /D or /DS options . For PWB command-line syntax and options, see the section
"Controlling the Environment" later in this chapter .

Using Programmer's WorkBench

Navigating in a File
PWB provides marks and anchors to help you navigate and edit large files . A "mark" is an
invisible placeholder that you can set at a specified location in a file to go to that location
quickly in the future . An "anchor" is a placeholder that determines the boundary of a block of
selected text to cut, copy, or delete .

Setting and Using Marks
To set a mark :

1 . Place the cursor at the location you want to mark, then choose Define Mark from the Sean, :11

menu .
PWB displays the Define Mark dialog box .

2 . Type a name that you want to assign to the mark and press Enter . Note that spaces are not
allowed in mark names .

To go to a mark :

1 . From the Search menu . choose Goto Mark .
PWB displays the Go To Mark dialog box .

2 . Select the mark from the displayed list and choose OK .

Gettint7 Started

	

37

New
Open . . .
Merge . . .
Next
Save
Save As . . .
Save All
Close

F8
Shift+F2

Print . . .
DOS Shell Shift+F9

Exit Alt+F4

1 NEW .BAS
2 BAR .BAS
3 BALLXOR .BAS
4 ADAPTER .BAS
5 TERMINAL .BAS

Alt+1
Alt+2
Alt+3
Alt+4
Alt+5

Chapter 4

38

Creating and Using a Mark File
Marks created as shown in the preceding section are temporary and are erased when you exit
PWB . To create marks that can be reused, you must create a nark file or select an existing one
before setting your marks .

To create a new mark file :

1 . From the Search menu, choose Set Mark File .
PWB displays the Set Mark File dialog box .

Type the name of the mark file you wish to create and press Enter. (The mark file should
have an MRK file extension to help you identify it in the future .)
PWB displays a dialog box asking if you want to create the file .

3 . Choose Yes .

To select an existing mark file :

1 . From the Search menu, choose Set Mark File .
PWB displays the Set Mark File dialog box .

I Select a mark file from the displayed list and choose OK .

After you create a new mark file or select an existing one, it becomes the current mark file and
any temporary marks are cleared . When you set new marks, they are added to the current mark
file by default .

Setting and Using Anchors
Anchors help you select large blocks of text to cut, copy, or delete .

To set an anchor, place the cursor at the position you wish to anchor and choose Set Anchor
from the Edit menu. You can only set one anchor at a time ; moving the cursor and choosing Set
Anchor again resets the anchor to the new position .

To select text between the current cursor position and the anchor, choose Select To Anchor
from the Edit menu. PWB highlights the selected text .

Programming with Multiple Files
To work on a project containing multiple files, you must create a program list . A "program list"
is a special PWB file that contains the build instructions and filenames for a project .

To create a program list :

1 . From the Make menu, choose Set Program List .
PWB displays the Set Program List dialog box .

Getting Started

Type the name of the program list you wish to create and press Enter . (The filename should

have an MAK file extension to help you identify it in the future .)
PWB displays a dialog box asking you if you want to create the file .

3 . Choose Yes .
PWB displays the Edit Program List dialog box .

4 . Select the files to include in the project from the displayed list . Do not select BASIC
include files (.BI), since they will be included when the program is compiled .

5 . Choose OK when you are done .

Build options are maintained in a state file that is maintained along with the MAK file . A
"state file" is a file containing information about the PWB editing session, such a, current build
options and file history . The state file maintained with a MAK file has the same base name a"
the MAK file, but has a STS filename extension . When you set a program list, build options
revert to those last saved in the state file . For information on setting build options . see the
section "Compiling and Linking a Program" later in this chapter .

To use an NMAKE MAK file in PWB, follow the procedure used to create a program liyt . but
select the Use as a Non-PWB Makefile checkbox in the Set Program List dialog boy before v ()u
press Enter in step 2 .

Note

	

PWB MAK files are not compatible with QBX MAK files and vice versa . If you are working
on a project in both environments, you should create a different .MAK file for each
environment .

Compiling and Linking a Program

Using Programmer's WorkBench

Executable files can be created directly from the PWB environment . Options can be sav ed for
debug and release versions of the executable file . All of the environment . corilpiler . and LINK
options are set from the Options menu .

Changing Environment Variables
To change environment variables from those in effect when PWB was run :

1 . From the Options menu, choose Environment .
PWB displays the Environment Options dialog box .

2 . Type the new environment variables in the fields provided . Press Tab to move to the
option . and press Enter when you are done .

Ile\t

The new environment variables take effect immediately and remain in effect until you C\ it

PWB . To make permanent changes to environment variables, edit your AIVTOE\EC .BAT file
(DOS) or your CONFIG .SYS file (OS/2) .

Getting St,Irte!d

	

39

Chapter 4

40

Setting Debug or Release Version
PWB maintains lists of debug and release options for compiling and linking a program . By
default. debug options create an executable file for use with CodeView : release options create
an optimized executable file without CodeView information . Setting release or debug version
makes it easy to switch between the two sets of options quickly .

To set whether the executable file will be a debug version or a release version :

1 . From the Options menu, choose Build Options .
PWB displays the Build Options dialog box .

2 . Select Debug or Release from the dialog box .

3 . Choose OK .

Debug and release version options are set from the compiler and LINK options dialog boxes .
To change compiler and LINK options for debug or release versions . see "Setting Compiler
Options" and "Setting LINK Options" later in this chapter .

Setting Main Language and Initial Build Options
Since PWB is a mixed-language programming environment, many of the build options that are
valid in some languages are not valid in others . PWB provides you with a way to set a main
programming language and to create default build options based on the target environment .
When working with BASIC . you should always leave Main Language set to BASIC . When
working exclusively in another language, such as C, you will want to change the Main
Language.

To change the Main Language :

1 . From the Options menu, choose Build Options .
PWB displays the Build Options dialog box .

2 . Select Set Main Language .
PWB displays the Set Main Language dialog box .

3 . Select a language from the displayed list, and choose OK .

4 . Select Set Initial Build Options box .
PWB displays the Set Initial Build Options dialog box .

5 . Select the line from the displayed list that best describes the executable file you want to
build, and choose OK .

6 . Choose OK again .

Three valid initial build options are provided for BASIC . You can save your current build
options to create a new group of initial build options that You can use with future projects . To
create a new group of initial build options fir BASIC :

ll . Set Main Language to BASIC (see the preceding procedure) .

Getting Started

Using Programmer's WorkBench

2. Set the build options . These include the settings for the debug and release versions of
compiler, LINK, and Source Browser options .

3 . From the Options menu, choose Build Options .
PWB displays the Build Options dialog box .

4 . Select Save Current Build Options .
PWB displays the Save Current Build Options dialog box .

5 . Type a name to identify your current build settings, and press Enter .

6 . Choose OK .

PWB saves initial build options in your state file . (For more information on state files . see the
section "Reducing Load Time" later in this chapter .) After initial build options are saved, they
are available from the Set Initial Build Options dialog box .

Setting Compiler Options
To set the BASIC compiler options within PWB :

1 . From the Options menu, choose BASIC Compiler Options .
PWB displays the BASIC Compiler Options dialog box .

2 . Select the appropriate displayed options, then select Set Debug Options or Set Release
Options .

3 . Select the appropriate options from the BASIC Compiler Debug/Release Options dialog
box, and choose OK .

4. Type any additional options you wish to specify in the Additional Options field, and chc~o,c
OK .

Note It is possible to set options in the Additional Options field that conflict with the options
specified in the BASIC Compiler Options dialog box . Conflicting options Will cause the
compile to fail .

Setting LINK Options
To set LINK options within PWB :

1 . From the Options menu, choose LINK Options .
PWB displays the LINK Options dialog box .

2 . Select the appropriate displayed options, then select Set Debug Options or Set Release
Options .

3 . Select the appropriate options from the LINK Debug/Release Options dialog box . and
choose OK .

4. Type any additional options or libraries you wish to specify in the Additional Libraries and
Additional Options fields, and choose OK .

UettlnO Starred

	

4 1

Chapter 4

42

Some LINK options, such as /INCREMENTAL and /TINY, are not valid for BASIC and will
cause the build to fail . For a list of the valid LINK options and their uses, see Chapter 18,
"Using LINK and LIB," in the Piagr -armner's Guide .

Building an Executable File
PWB offers four choices from the Make menu for building an executable file . These selections
allow you to :

•

	

Compile or compile and link a single file .

•

	

Compile changed files and relink with unchanged object files in a project .

•

	

Compile and link all files (changed and unchanged) in a project .

For information on creating a project, see the section "Programming with Multiple Files"
earlier in this chapter .

Compiling a Single File
Compiling a single file can be used as a first step in debugging a new program or as preparation
for compiling and linking files in a program list .

To compile a single file :

1 . Open the file to he compiled .

2 . Set the compiler options .

3 . From the Make menu, choose Compile File .
PWB compiles the file . Any errors . are displayed in the Compile Results window .

4. PWB displays a dialog box confirming that the compile has completed . Select one of the
buttons or press Esc to return to the active window .

Compiling and Linking a Single File
To compile and link a single-file program :

1 . Open the file to compile and link .

2 . Set build, compiler, and link options as needed .

3 . From the Make Menu, choose Build or Rebuild All . The Build command recompiles the
file]fit has changed since it was last compiled, then links the file with the appropriate
library to create an executable file . Rebuild All compiles the file whether or not it has
changed, then links the file with the appropriate library to create an executable file .
If the build fails, PWB displays compile or LINK errors in the Compile Results window .

4 . PWB displays a dialog box confirming that the build has completed . Select one of the
buttons or - press Esc to return to the active window .

Getting Started

Compiling and Linking Files in a Project
PWB gives you two options for compiling and linking the files in a project : _you can recompile
only files that have changed and link with unchanged object files, or compile and link all files
whether or not they have changed .

To compile and link files in a project :

1 . Set or create a program list for the project (see "Programming with Multiple Files" earlier
in this chapter) .

2 . Set build, compiler, and link options as needed .

3 . From the Make Menu, select Build or Rebuild All . Build compiles only changed file', in the
project and links them with existing (unchanged) object files . Rebuild All compiles and
links all files in the project .
If the build fails, PWB displays compile or LINK errors in the Compile Results window .

4 . PWB displays a dialog box confirming that the build has completed . Select one of the
buttons or press Esc to return to the active window .

The preceding procedure uses the same compiler options for all files in the program list . To
build a project using different compile options for a single file within that project :

1 . From the Make menu, choose Clear Program List .

2. From the File menu, choose Open to open the file to compile .

3 . Set the compiler options for the file .

4 . From the Make menu, choose Compile .

5 . From the Make menu, choose Set Program List and select the program list for the project .

6 . From the Make Menu, choose Build .
PWB does not recompile the file you compiled in step 4, since it has not changed . It will ..
however, recompile any changed files using the compile options last set for the program
list, then link the objects with the appropriate library to create an executable file .

Debugging a Program

Using Programmer's WorkBench

PWB provides the following diagnostic tools to help you locate errors. debug . and maintain
your programs :

•

	

Compile Results window

•

	

Source browser

•

	

CodeView support

Getting Starled

	

43

Chapter 4

44

Viewing Compiler Results
if errors occur when you compile or build a program . PWB displays the errors in the Compile
Results window, as shown in Figure 4 .3 .

File Edit View Search Make Run Options Browse

	

Help

12I-P	 -J'	B	 ItIC
DATA 23, -45, 6, 5, 1,12, 7, 1, -9,0

CLS
REDIM X(1 TO 10) AS INTEGER

45850 Bytes Available
45370 Bytes Free

0 Warning Error(s)
0 Severe Error(s)

1

<F1=Help> <Alt=Menu> <F6=UINDOU>

	

pseudo

	

00001 .001

Figure 4.3 Compile Results Window

Getting Started

' Create dynamic array .

FOR l/. = 1 TO 10

	

' Read in data .
READ X(1i)

NEXT Ii

. -1	4	
Compile Results

+++ PWB [C :\BC7\SRCI Compile NEW .BAS
be /Z /0 /G2 /Fpi /Lr /D /Zi NEW .BAS, NEW .obj :

Microsoft (R) BASIC Compiler Version 7 .10 .05 (Beta)
opyright (C) Microsoft Corporation 1982-1990 . All rights reserved .

t

i

I

Program Window

Compile Results
Window

PWB automatically takes you to the location in your source file where the first error occurred .
To go to the next error, press Shift+F3 . To return to the previous error, press Shift+F4 .

To close the Compiler Results window, choose Compile Results from the View menu .

Using the Source Browser

I

The PWB Source Browser provides a way to view relationships within a program and to
quickly locate specific procedures, variables, and constants .

In order to use the Source Browser, it must be turned on before compiling and linking . Once the
Source Browser is on and the program has been compiled and linked, the selections on the
Browse menu become active . Tile Browse menu is shown in Figure 4 .4 .

Browse

Goto Definition . . .
Goto Reference . . .
View Relationship . . .
List References . . .
Call Tree . . .
Outline . . .

Next Ctrl+Num+
Previous

	

Ctrl+Num-

Case Sensitive
Split Windows

Figure 4.4 Browse Menu Selections

Browser Terminology

Since the Source Browser can be used with programs written in languages other than BASIC .
some of the terms the Browser uses to refer to symbols may not be familiar . Keep in mind the
following equivalents :

Source Browser term
Functions
Types
Macros

Turning On the Source Browser

To generate information for the PWB Source Browser, you must turn on browse information
and compile the program :

1 . From the Options menu, choose Browse Options .
PWB displays the Browse Options dialog box .

2 . Select Generate Browse Information and any additional options .

3 . Choose OK.

4 . Compile and link the program .

By default, PWB creates full browser information by compiling with the /FBx option . The FB\
option generates browser information for global and local definitions . To generate Intorinatioll
for global definitions only, thus reducing the size of the resulting Browser files, you can
perform the following steps before compiling and linking :

1 . From the Options menu, choose BASIC Compiler Options .
PWB displays the BASIC Compiler Options dialog box .

2 . Select Set Debug Options or Set Debug/Release Options .

3 . From the Set Options dialog box, choose Restricted Browse Info /FBr, and choose OK .

4 . Choose OK again .

Using Programrner'.s WorkBench

BASIC equivalent
Procedures (SUBs and FUNCTIONs)
User-defined types
Constants

3dttina tit'lileJ

	

45

Chapter 4

46

When you compile and link from PWB with the Source Browser turned on, the BASIC
compiler generates a Browser information file with an SBR extension . PWB then uses
PWBRMAKE.EXE to convert this file into one which the Browser can read . This new file has
a .BSC file extension .

Locating Program Symbols
The Source Browser helps you quickly find where procedures, variables, user-defined types .
and constants are defined and referred to .

To locate a definition :

1 . From the Browse menu, choose Goto Definition .
PWB displays the Goto Definition dialog box as shown in Figure 4 .5 .

Select the item you wish to locate from the Names list box .
PWB displays the locations where the definition occurs in the Defined in : list box .

3 . Select the occurrence of the definition you wish to go to from the Defined in : list box .

4 . Choose OK .
PWB takes you to the location in the file where the selected definition occurs .

Goto Definition	
Name :tANSWER	 ------

-
:

Names

	

Defined in :

ADJUST INDEX
ADJUST INDEX$
ALERT$
ALINE

ANSWER
ANSWER/.
AMYRECORDS
ARGUMENT
ARGUMENT;/.
AUTHORFIELD

Figure 4.5 The Goto Definition Dialog Box

To locate a reference :

1 . From the Browse menu, choose Goto Reference .
PWB displays the Goto Reference dialog box .

2 . Select the item to locate from the Names list box .
PWB displays the locations where the reference occurs in the Referenced in : list box .

Getting Started

t

I
BOOKLOOH .bas (62)
BOOHLOOH .B I (127)
BOOKLOOH .bas (374)
BOOHLOOH .bas (562)

t

I

1
I

< OH > <Cancel> < Help >

3 . Select the occurrence of the reference you wish to go to from the Referenced in : list has .

4. Choose OK .
PWB takes you to the location in the file where the selected reference occurs .

To ego to the next reference or definition of a symbol, press Ctrl+Keypad Plus Sign (+) .

To return to the previous reference or definition of a symbol, press Ctrl+Keypad Minus Sign I-I

Viewing Relationships Between Symbols

The Source Browser helps you view relationships between procedures . variables . user-defined
types, and constants . These relationships include where a symbol is defined and used . where t

procedure is called, what calls are made by a procedure or module, etc .

To view how a single symbol relates to the rest of the program :

1 . From the Browse menu, choose View Relationship .
PWB displays the View Relationship dialog box, as shown in Figure 4 .6 .

2 . Select Program Symbols from the Operation list box .

3 . Select the symbol you want to view from the list box .

4 . Select the operation you want to perform from the Operation list box .

5 . Choose OK .

To redisplay all the symbols, select Program Symbols from the Operation list box and chot),.e
OK .

View Relationship
Name :t	 I

List : Program Symbols (422 items)

	

Operation :

tADDED (variable)
ADDONE$ (function)
ADDONEV. (function)
ADDRECORD (constant)
ADJUST INDEX (function)
ADJUSTINDEX$ (function)
ALERT$ (variable)
ALERT$ (variable)
ALINE (constant)
ANSWER (variable)
ANSWER (parameter)
ANSWER$ (variable)
ANSWERI (parameter)
ANYRECORDS (variable)
ARGUMENT (parameter)

Figure 4.6 View Relationship Dialog Box

I

Show only :
[X] Functions
[XI Variables
[X] Types

1 [X] Macros
I Pattern :[]

() Program Files
(•) Program Symbols
() Contains
() Calls
() Called By
() Uses
() Used By
() Used In
() Defined In

<History . . .> < Goto > < Back > < OX > <Cancel> < Help >

Using Programmer' .; WorkBenrh

Gett/na Started

	

47

Chapter4

48

To view a listin`e of the different types of symbols and where they are used :

1 . From the Browse menu, choose List References.
PWB displays the List References dialog box .

2 . Select the types of symbols to list .

3 . Choose OK .
PWB creates a file named <browse> containing the call tree and displays it in the active
window, as shown in Figure 4 .7 .

File Edit View Search Make Run Options Browse
<browse>

CALLED BY LISTFUNCTION

ADDONE$:
ADDONE~ :
ADJUST INDEX :
ADJUST INDEX$:
BOOHSBORROWED :
BOORSBORROWED$:
BOOHSOUTBOX$:
BOORS TABLE$:
BORROWBOOH :
BORROWBOOH# :
BORROWED :
BORROWED$:
CATCHKEYi :
CATCHHEY% :
CHANGERECORD$:

CHANGERECORDz :
CHECRINDEX . :

~<General Help> <FI=Heip>

Figure 4.7 Source Browser Reference List

To view an outline of where procedures are called (referred to as a "call tree") :

1 . From the Browse menu, choose Call Tree .
PWB displays the Call Tree dialog box .

2. Select a file to view from the Files list box or a procedure to view from the Functions list
box .

3 . Choose OK .
PWB creates a file named <browse> containing the listing and displays it in the active
window, as shown in Figure 4 .8 .

Getttny Started

Help
~t~,

t

I
(BOOHLOOH)

	

ADDONE$[21
(BOOHLOOH)121
(BOOHLOOH)121

	

SEEHRECORD
(BOOHMOD2)
(BOOHLOOH)121
(BOOHMOD3)
(BOORLOOH)
(BOOHMODI)

	

DRAWTABLE
(BOOHMOD3)
(BOOHLOOH)121
(BOOHMOD3)

	

BORROWED[21
(BOOKLOOK)[31
(BOOHMOD3)

	

CATCHKEY'.[2l
(BOOHLOOK)
(BOOHMOD2)

	

CHANGERECORD$[2l
EDITFIELD[21
(BOOHLOOK)
(BOOHLOOK)[2l

	

RETRIEVER[2l
SEEHRECORD12l

	

ADJUST INDEX$

	

4
A

<Alt=Menu>

	

`pseudo

	

R M

	

00003 .894

File Edit View Search Make Run Options Browse
<browse>

BOOHLOOI{ .bas
ADDONE$
: CLEAREM'?
SHOWMESSAGEx?
EDITFIELDz?
ADDONE$[Zl . . .

CHECHPOSITION
SHOWMESSAGE •r. [Z]?
ERASEMESSAGEz[21?

CHOOSEORDER
DRAW TABLE?
DRAWINDEXBOX[21?
PLACECURSORz?
SHOWRECORD?
SHOWMESSAGE'?
CHOOSEORDER[21 . . .

DUPEFIXER
: SHOWMESSAGEz[21?
EDITCHECH

DRAWINDEXBOX?
GET INPUT •r.

A''
<General Help> <F1=Help> <Alt=Menu> pseudo RM

1

00002 .004

Figure 4.8 Source Browser Call Tree

To view an outline of a program:

1 . From the Browse menu, choose Outline .
PWB displays the Outline dialog box .

2 . Select the file to view from the File List list box .

3 . Select the type of symbols you want to include in the outline from the options under the
Show Only label .

4 . Choose OK .
PWB creates a file named <browse> containing the outline and displays it in the actin e
window, as shown in Figure 4 .9 .

Using Programmer's WorkBench

Getting AWOL!

	

49

Chapter 4

50

File Edit View Search Make Run Options Browse
<browse>

BOOHLOOH .bas
ADDED
ADDONE$
ALERT$
ALERT$
ANSWER
ANSWER
ANSWER$
ANSWER/.
ANYRECORDS
ARGUMENT
ARGUMENT/.
ARGUMENT/.
BIGREC
BIGREC
BOOHLOOH
CHECRED
CHECHEDOUT
CHECHPOSITION
CHOOSEORDER
DATETOSHOW#

<General Help> <F1=Help>

Help

M,
t

(variable :module)
(function :public)
(variable : local)
(variable :module)
(variable :module)
(parameter : local)
(variable : local)
(parameter : local)
(variable : module)
(variable : local)
(variable : local)
(variable : module)
(variable :module)
(parameter : local)
(program :module)
(variable :module)
(variable :module)
(function : public)
(function :public)
(variable :module)

	

1
49

(Alt=Menu>

	

pseudo R M

	

00874 .601

I

Figure 4.9 Source Browser Program Outline

By default. the <browse> file replaces the current program file in the active window . You can
set PWB to create a new window for the <browse> file by choosing Split Window from the
Browse menu before viewing symbol relationships .

Using Code View
To start CodeView from PWB :

1 . Build an executable file using the CodeView options for the compiler UZi or /Zd) and
linker (/CO) . These are set by default if you are building a debug version of the program .
See the section "Setting Debug or Release Version" earlier in this chapter .

2 . From the Options menu, choose CodeView Options to set the CodeView command-line
options .

3 . From the Run menu, choose Debug .
PWB exits and loads CodeView .

When you exit CodeView, PWB is restarted .

For more information on using CodeView to debug your programs, see Chapter 5, "Using
CodeView ."

Getting Started

Customizing the Environment

Using Programmer's WorkBenr- h

Within PWB you can customize many features of the environment, such as screen colors, editor
behavior, and key assignments . You can also define new functions as macros and assign them
to keystrokes .

Changing Editing Settings
To change how the environment looks and behaves :

1 . From the Options menu, choose Editor Settings .
PWB displays the current editor settings in the active window .

2 . Scroll down to see all of the settings . Online Help is available for each of the settings .

3 . Change the settings as appropriate . The new settings take effect when you move the cur,(r
to the next line .

To make the changes permanent, choose Save from the File menu . PWB saves the changes to
the TOOLS .INI file . If you do not save the changes, they are discarded when you exit PWB .

To return to the current file, press F2 .

Assigning Keystrokes
To change key assignments or to assign new functions to keys :

1 . From the Options menu, choose Key Assignments .
PWB displays the current key assignments in the active window .

2 . Scroll down to see all of the assignments. Online Help is available for each of the editor
functions .

3 . Change the key assignments as appropriate . The new assignments take effect when ou
move the cursor to the next line .

To make the changes permanent, choose Save from the File menu . PWB saves the change, to
the TOOLS .INI file . If you do not save the changes, they are discarded when you exit P\ B .

To return to the current file, press F2 .

The key assignments are divided into sections for each part of PWB . A label at the beginning of
each section indicates where the assignments are used . For example, the (pwbl tag indicates
that the subsequent assignments apply to the entire PWB environment : the (pwh-pwbhasicl tag
indicates assignments that apply only to the BASIC Compiler selection from the Options menu :
and the [pwb-pwhhelp] tag indicates settings that apply to the online Help system .

A table of key assignments unused by PWB is included after the lpwh-pwbutilsl tag . These key
combinations may he used for currently unassigned editor functions or for ne \\ tunctlon s
created as macros .

Gethno Started

	

51

Chapter 4

52

Creating Macros
To record a macro :

1 . From the Edit menu, choose Record On .
PWB displays the Set Macro Record dialog box .

2 . Type the name you want to assign to the macro in the Name field .

3 . Tab to the Key Assignment field and type the names of the keystrokes you want to assign
to the macro . If you place the cursor between the braces, { }, and press the key sequence
you want to assign to the macro, the correct description of the key sequence is displayed in
the field to the right .

4 . Choose OK .

ti . Perform the actions you want to record .

6 . Choose Record On again to end the recording .

To make the recorded macro permanent :

1 . From the Edit menu, choose Edit Macro .
PWB displays the currently defined macros in the active window .

From the File menu, choose Save .

3 . Press F2 to return to the current file .

When you make a macro permanent, PWB writes the macro definition and key assignment to
your TOOLS .INI file . To modify the macro after you have made it per lanent, you must edit
the TOOLS .INI file .

Examining macro definitions in TOOLS .INi is a good way to learn the syntax of macros .
Example macros are included in the TOOLS .PRE file included with BASIC . Online Help is
also available on how to create and modify macros in PWB .

Reducing Load Time
When you start PWB, it automatically reads your TOOLS .INI file and a state file named
CURRENT.STS from the directory defined in your INIT environment variable . Together, these
files control the editor settings, macro definitions, and key assignments used by PWB . Since
reading these files takes time, you can reduce load time by :

•

	

Keeping the PWB entries in TOOLS .INI as short as possible .

•

	

Keeping CURRENT.STS as small as possible .

•

	

Not reading one or both of these files when you Start PWB .

Getting Started

Using Programmer's WorkBench

PWB also automatically loads any extension files it finds whose filenaummes start with the lctter' .
"PWB" in the directory from which you start PWB . These extension files make certain
functions, such as the BASIC Compiler options, available in the environment . You can further
reduce load time by disabling this auto-load feature and explicitly loading only the extensions
you need .

Minimizing TOOLS. INI
The entries for PWB in your TOOLS .INI file appear after the [pwb] label in that tile .
TOOLS .INI can be edited and saved in the same way as any other file . Macros and settingy that
you may not use can be commented out by placing a semicolon (;) as the first character on the
line . Lines that have been commented out are not read when PWB starts and will reduce load
time slightly .

Minimizing CURRENT. STS

PWB creates the CURRENT .STS file to save file history and some editor settings (such as
build options and file history) . This file can be kept small by reducing the number of files you
keep in history and by keeping the default editor settings . To reduce the number of files PWB
keeps in history, you can reduce the number assigned to the tmpsav switch after the Ipwbl label
in the TOOLS .INI file . Reducing this number reduces the number of files that can be recalled
from the File menu without using the Open File dialog box .

Ignoring TOOLS. INI and CURRENT. STS

You can prevent PWB from reading TOOLS .INI or CURRENT .STS or both files by using one
of the /D options when you start PWB from the command line . The /DS option prevents
CURRENT.STS from being read . The /DT option prevents TOOLS .INI from being read . The
/DST option prevents both files from being read . Although these options prevent the
information in these files from being available to PWB, they can he useful for some
programming tasks .

Starting PWB with /DS is especially useful when working with a program list, since PW'B
creates a startup file to save the editor settings for each program list you create . When you set a
program list, PWB automatically reads the new editor settings from the startup file for the
program list. This file has the same base name as your MAK file, but has an STS filename
extension . For more information on PWB command-line options . see the section "Controlling
the Environment" later in this chapter .

Getting Started

	

53

Chapter 4

Loading PWB Extensions Explicitly
PWB does not automatically load its extensions if you include the /DA option when you start
PWB from the command line . This significantly reduces the time it takes to start PWB . but also
limits the features that are available in the environment . You can restore features by explicitly
loading extensions through settings in the TOOLS .INI file . For example :

-u

	

-

	

BAS .Bi ;
B ,- - ..EI lArWBBASIC .M:x:T ; C : ABC-7BIN\PVdBUTILS .MZT

These lines explicitly load the BASIC and utilities PWB extensions when you edit a file with
the BAS or .BI filename extension . If these lines exist in your TOOLS .INI file and you start
PWB with the following command line, only the BASIC functions are available :

^7B % DA test .bas

The following table lists the filenames of the PWB extensions and describes the functions they

Controlling the Environment

54

The full syntax for starting PWB from the command line is as follows :

PWB [l oo/)tions ll ll/)ro,,Vramnarltc' 11 [Iprogrmnlianre ll . . .

Unlike QBX, pro ramname must include its filename extension if one exists . If you specify
more than one /rrn,tircmrrrcune . the first name you specify is the first file PWB edits . The
remaining files are loaded if you select choose Next from the File menu .

Option

/e s/rin,i'

/I /I'/('

Getting Started

Action
Executes the PWB commands specified in
string when PWB starts up .
Indicates that the specified file is temporary and
should not be kept in file history . You must
precede the name of each temporary file
with a /t .

provide :
Real-mode file Protected-mode file Provides support for

PWBBASIC.MXT PWBBASIC.PXT BASIC Compiler functions .

PWBROWSE.MXT PWBROWSE.PXT Source Browser functions .

PWBC.MXT PWBC.PXT C Compiler functions . This file is
included on the BASIC distribution
disks, but is not installed by Setup .

PWBHELP.MXT PWBHELP.PXT Online Help functions .

PWBUTILS.MXT PWBUTILS .PXT LINK, NMAKE, CodeView, and
build functions .

Using Programmer's WorkBench

/DIIA I S I TA

	

Prevents PWB initialization files from heing
read at startup . The /DA option prevents
extensions from being loaded automatically .
The /DS option prevents the CURRENT .STS
file from being read . The /DT option prevent"
the TOOLS .INI file from being read . The /D 1 1,

equivalent to MAST .

/PR F file I L I P filel]

	

Loads a program list . The /PF option load,, the
NMAKE MAK file specified by ,filc . The /PL
option loads the last MAK file used in PWB .
The /PP option loads the PWB MAK file
specified by,/i/c .

/r

	

Specifies that all files opened are read-only .

/m positionr

	

Puts the cursor at the file location ,pecltled by
position . For example :

PWB /m 1 2 _

The preceding command line load,, the file
BOOKLOOK .BAS and places the cursor at line
120, character position 50 .

/?

	

Lists the command-line options for running
PWB .

getting skilled

	

55

Chapter 5
Using Code View

The Microsoft CodeView debugger helps you locate, identify, and resolve bugs in programs
under DOS or OS/2 . CodeView can help you debug programs compiled from within QBX or
PWB, or from the command line . CodeView can be accessed directly from the Pro`rrammer"s
WorkBench (PWB) . Together, PWB and CodeView provide a complete development <v"tem
for mixed-language and OS/2 program development .

This chapter describes :

•

	

Preparing your programs for debugging with CodeView .

•

	

Running CodeView .

•

	

Debugging a program .

•

	

Controlling the flow of execution while debugging .

•

	

Displaying and changing variables .

•

	

Advanced CodeView debugging techniques .

•

	

Customizing CodeView using the TOOLS .INI file .

•

	

Controlling Code View with command-line options .

Preparing BASIC Files for Code View
CodeView can debug programs created with any editor or environment . QBX and PWB
provide CodeView options for compiling within the environment. With QBX . however . you
must save your source file in text format before compiling with the CodeView option . Source
files saved in QBX binary format are not compatible with CodeView .

Getrlnt) staged

	

57

Chapter 5

58

Programming Style
To make it easier to debug programs in CodeView, you should avoid the following
programming practices :

•

	

Using the colon (:) to place multiple BASIC statements on a single line .

CodeView can step through a program one line at a time . If more than one statement occurs
on a line, CodeView treats the line as a single statement .

•

	

Placing executable statements in include files .

You cannot trace through executable statements that occur in an include file . Placing
executable statements in include files is not a good programming practice .

•

	

Using non-unique array names .

Arrays should be named uniquely. If a variable has the same name as an array in your
program, CodeView assumes that symbol is a variable, not an array . You will not be able to
perform some operations on that array from the CodeView Command window .

Compiling and Linking
To debug a program in CodeView, you must compile the program with the /Zi or /Zd options
and link using the /CO option . The /Zi option makes the executable file larger . You can reduce
the size of programs by compiling with /Zd . You will not be able to view symbols in the Local
window within CodeView, however .

You should not use the optimize (/Ot) option when compiling a program for use with
CodeView . Although CodeView can debug an executable file compiled with /Ot, you will not
he able to pause program execution on lines containing SUB, FUNCTION . or DEF FN
Statements .

Object files compiled for use with CodeView must be linked using the /CO Option . When
linking in DOS, you cannot use the /EXEPACK and /CO together . If Your program needs to be
packed to fit in memory . use the CVPACK utility to compress the executable file for
debugging .

The syntax for CVPACK is :

CVPACK II/HELP I /PI filename

If you specify the /P option . CVPACK rewrites the file as compactly as possible . If you don't
specify the /P, CVPACK rewrites the file as quickly as possible . In either case, the program
takes up the same amount of memory .

Getting Started

Running Code View
To start CodeView from the command line . use the CV real-mode or CVP protected-mode
command and specify an executable file . For example :

CV TEST .EXE

To start CodeView from PWB in real or protected mode, choose Debug from the Run menu . By
default, CodeView displays three windows, as shown in Figure 5 . 1 .

Source Window

EditFile

34 :
35 :
36 :

	

DEFINT A-Z
37 :

	

'$INCLUDE : 'BOOHLOOH .BI'
38 :

	

SCREEN 0
39 :

	

CLS

	

TempRec is for editing and adding record
40 :

	

DIM TempRec AS RecStruct

	

Used only to blank out a TempRec
41 :

	

DIM EmptyRec AS RecStruct

	

See BOOHLOOH .B I for declaration of
42 :

	

DIM BigRec AS RecStruct

	

this structure and its elements
43 :

	

DIM Marker(25) AS INTEGER

	

' Array to hold SAVEPOINT returns
44 :
45 :

	

Open the database and the BookStock, CardHolders, and BooksOut table

~I •I	command	 IIIlm
t

loc;ai .__:,

Cs*SfLT' TicIZ Oll bas (ACTP E)

View Search Run Watch Options Calls

<FlO=Step> <F5=Go> <F6=Window> <F3=Display>

Figure 5.1 The Code View Debugger

The "Local window" displays the current symbols along with their addresses . types . and \ alue~, .
This window is empty until you begin executing your program .

The "Source window" displays the program's source code . Since the program loaded in
CodeView is a compiled executable program, you cannot make changes to the source from
within CodeView . The Source window shows you where you are in a program and lets you
execute the program statement-by-statement .

The "Command window" lets you enter CodeView commands and display and evaluate BASIC
expressions . Although you cannot make changes to a program from CodeVle\y . you can use the
Command window to change the value of variables, write data to memory, and perform a
variety of other tasks. CodeView supports a limited number of BASIC intrinsic functions \ \ 110 1

can be called from the Command window . See the CodeView online Help on BASIC Illtrln>lc
functions for more information .

- Local Window

Command Windot :

Using Code View

Getting Stalled

	

59

Chapter 5

CodeView includes extensive online Help . If you request Help and get an error message
indicating that no Help files were open or that they could not be found, check your
HELPFILES environment variable . HELPFILES can be set by running NEW-VARS .BAT
(DOS) or NEW-VARS .CMD (OS/2) from the command line before starting CodeView .
Setting HELPFILES in the PWB environment has no effect in CodeView .

Within CodeView. environment tasks can be performed by using either the mouse or the
keyboard . The following table lists commonly used key combinations by category and task .
The Command window equivalent is given where one exists . (See the online Help on
CodeView commands for a complete list and description of CodeView commands .)

CodeView
Category

	

Task

	

Key sequence

	

command

Execute Run F5 G

Step single statement F8 T

Procedure step

	

F l 0

	

P

Debug

	

Set watch

	

Ctrl+W

Delete watch

	

Ctrl+U

Quick watch

	

Shift+F9

	

??e.V/pre .vsio,i

Set/clear breakpoint

	

F9

	

BP/BC

Edit

	

Select text

	

Shift+direction key

Copy

	

Ctrl+Ins

Paste

	

Shift+Ins

Undo

	

Alt+Backspace

Windows

	

Next window

	

F6

Previous window

	

Shift+F6

Resize a window

	

Ctrl+F8

Maximize a window

	

Ctrl+F10

Help

	

Get Help on a topic

	

Fl

	

H

View table of contents

	

Shift+Fl

Exit Help

	

Esc

Redisplay last Help

	

Alt+FI

The Edit tasks are used to copy and paste expressions, values, and blocks of memory . You
cannot Paste into the Source window .

60 Getting Started

Debugging Your Program
CodeView is similar to QuickBASIC Extended (QBX) in that you can watch the valoe Ot

variables while you execute parts of your program . Like QBX . you can execute one line at a
time, one procedure at a time, or up to a specific location . Unlike QBX, you cannot rewrite
your program within CodeView .

CodeView also lets you directly manipulate the values stored in variables and in memory .

Running Your Program
To execute a single line of code, press F8 .

To execute a line of code or without tracing into procedures . press F 10 .

To quickly execute up to a specific location in a program :

1 . In the Source window, scroll to the location at which to stop .
2 . Click the right mouse button at that location .

CodeView executes up to that location at normal execution speed .
To run a program one line at a time :

1 . From the Run menu, choose Animate .
CodeView immediately begins executing the program .

2 . Press any key to stop .

llltj~~pa -. It -

	

When you run your BASIC program in CodeView under DOS, you will not be able to use the
DOS Shell command from the File menu . This is because BASIC reserves all remaining
conventional memory while the program is running . To be able to use the DOS Shell command
you should terminate or restart your BASIC program .

Viewing Current Data
When you start executing a program in CodeView, the debugger automatically displays ill
current variables in the Local window . The Local window shows the address, data type . name.
and value of each variable in the current procedure . For example :

2 FCE :ooF

	

STRIIJG

	

FULLNAME :; _ "Dan We b , b"

The value 2FCE:0062 is the address of the variable in memory . STRING is the data type .
FULLNAME$ is the variable name, and "Dan Webb" is the current value of the Variable .

For arrays and user-defined data types, CodeView displays a summary line . For example :

+ .'F(-'E :)070 INTEGER AZ"- [array] _ :CANN TDTI-[LAYype
TESTFECOR FILEBt7FFER = I . . .F

Using CodeView

Getting Stit ed

	

61

Chapter 5

62

The plus sign (+) to the left of the memory address shows that there is more information . To see
the elements in the structure TESTRECOR, select the TESTRECOR line . The line expands as
follows :

E : O

	

tyre

	

TF;UT'PEnnP FILEBUFFEF'
P1

	

NAMEFLELD _ "Jeff

	

yle"

The minus sign (-) to the left of the memory address shows that the line is fully expanded .

You cannot expand BASIC arrays . Instead, you must set watches on elements in the array to
see their values .

Using Watches
Watches let you observe the value of a variable or expression as your program executes . Since
CodeView displays the value of local variables in the Local window, CodeView's watches are
mainly useful when the Local window is not displayed or for observing array elements and
expressions .

To add a variable to the Watch window :

J-1

i
<FB=Trace> <F10=Step>

ommand II
1

<FS=Go> <F6=Window> <F3=Display>

Figure 5.2 Code View Watch Window

Getting Started

1 . Place the cursor on the variable and press Ctrl+W .
Code View displays the Add Watch dialog box .

2 . Choose OK .
Code View adds the variable to the Watch window, as shown in Figure 5 .2 .

File Edit View Search Run Watch Options Calls

	

Help

-I. I

	

ItI~I. I 11
400D :04AC INTEGER

	

ANYRECORDSx =
408D :04A6 INTEGER

	

ADDEDx = 0
400D :0496 STRING

	

ALERT$ _ ""

+BigRec = { . .}
answerx = 0
PendingFlag = 0 Watch Window

408D :048C INTEGER

	

ARGUMENTx =
400D :046A INTEGER

	

ANSWERZ = 0

0I •I

	

ourcel CS :IP BOOKLOOR .bas (ACTIVE)

	

I11~
71 : 1
72 :

	

STACK 4000

	

Set large stack for recursioU
73 :

	

also resets FRE(-2) to stack
74 :
75 :

	

answerx = Getlnputx(BigRec)

	

' Find out what the user wants
76 :
77 :

	

IF answer < UNDO THEN

	

' Excludes UNDOALL & INVALIDRE
78 :

	

CALL EditCheck(PendingFlag, answer, BigRec)
79 :

	

END IF

Using Code View

A variable may be followed by the message "Watch Expression Not in Context ." This message
appears when program execution has not yet reached the statement in which the variable is
defined. Global variables, which can be watched from anywhere in the program . never cause
CodeView to display this message .

To remove a variable from the Watch window, place the cursor on any line in the Watch
window and press Ctrl+Y to delete the line .

You can place as many variables as you like in the Watch window . the quantity is limited only
by available memory . CodeView automatically updates all watched variables as the program
runs . This can slow execution speed considerably .

Displaying Expressions in the Watch Window
The Add Watch dialog box prompts for an expression, not simply a variable name . As this
suggests, you can enter an expression (that is, any valid combination of variables . constants .
and operators) for CodeView to evaluate and display .

You are not limited to evaluating BASIC expressions . The Language command from the
Options menu offers a choice of BASIC, C, or FORTRAN evaluation for all expressions . Tile
ability to select the language evaluator is especially useful when debugging mixed-language
programs .

By reducing several variables to a single, easily read value, an expression can be easier to
interpret than the components that comprise it .

Displaying Array Elements Dynamically
You can display a single element of an array using a specific subscript . You can also specify ~r

variable array element, which changes as some other variable changes . For example . suppose
that the loop variable p is a subscript for the array ata1cgPrice ~ . The Watch window
expression Ca.talocrPrice@ (p) displays only the array element cur - r- ently specified by
not the entire array .

You can mix constant and variable subscripts . For example, the expression
BigAr ray (3, i) displays the element in the third row of the array to which the index
variable i points .

Using Quick Watch
A quick watch shows the current value of a variable . This is useful for quickly finding the value
of a variable at some point in the program without adding it to the Watch window .

To display a quick watch :

1 . Place the cursor on the variable to watch .

2 . From the Watch menu, choose Quick Watch (or press Shift+F1)) .
CodeView displays the Quick Watch dialog box with the value of the variable .

Getting Stalled

	

63

Chapter 5

64

The Quick Watch display automatically expands user-defined types to their first level . You can
expand or contract an element just as you would in the Watch window by placing the cursor on
the appropriate line and pressing Enter .

Displaying Memory
YOU can view data at specific memory addresses using CodeView .

To display nienmory, choose Memory from the View menu . CodeView displays the Memory
~~ i ndow . a s shown in Figure 5 .3 .

File Edit View

-I •I
40OD :04AC INTEGER
400D :04A6 INTEGER
400D :0496 STRING
400D :048C INTEGER

-I •1
77 :

Getting Started

Search Run Watch Options Calls

111MI
ANYRECORD8< = +BigRec = { .„ }
ADDED> = 0

	

answer% = 0
ALERT$ _ ""

	

PendingFlag = 0
ARGUMENT .' = 0

ourcel CS :IP BOOHLOOH .bas (ACTIVE)

6r9_-A

IF answer < UNDO THEN ' Excludes
78 : CALL EditCheck(PendingFlag, answer, BigRec)
79 : END IF
80 :

'1 . 1
655 :0000 CD 20 8D
655 :0010 19 25 BB
655 :0020 FF FF FF
655 :0030 EB 22 14
655 :0040 00 00 00
655 :0050 CD 21 CB

. 1

emoryl byte DS :0000 (ACTIVE)
50 00 9A FO FE ID FO 8B 02 19 25 51
0A 19 25 A2 16 01 01 01 00 02 03 FF
FF FF FF FF FF FF FF FF FF 04 17 A2
00 18 00 55 26 FF FF FF FF 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 20 20

UNDOALL & INVALIDRE

1 1 1-
03 . .P	AQ .

	

t
FF .z . . .x	

00 ."U&	
00	
20 .r	

-41
11 1.ommand

<FB=Trace> <F1B=Step> <FS=Go> <F6=Window> <F3=Display> <Sh+F3=Memory Format>

Figure 5.3 Code View Memory Window

Up to two Memory windows can he open at once .

By default, memory is displayed as hexadecimal byte values, with 16 bytes per line . At the end
of each line is a second display of the same memory in ASCII form . Values that correspond to
printable ASCII characters (decimal 32 through 127) are displayed in that form . Values outside
this range are shown as periods .

Byte values are not always the most convenient way to view memory . If the area of memory
you're examining contains character strings or floating-point values, you might prefer to view
them in a directly readable form .

To change the way data is displayed in the current Memory window :

1 . From the Options menu, choose Memory Window .
CodeView displays the Memory Window Options dialog box .

2 . Select the format for display, and choose OK .

Memory Window

ViewFile Edit

400D :04AC INTEGER
400D :04A6 INTEGER
400D :@496 STRING
400 D : 848C INTEGER

01 . 1

Search
local

Run Watch Options Calls

	

Help

ItI, I . l -11
-

	

ItImmI •IsmIti
ANYRECOR +BigRec = { . . .}
ADDEDZ = answer< = 0
ALERT$ = PendingFlag = 8
ARGUMENT

Its
IF answer < UNDO THEN

	

' Excludes UNDOALL
CALL EditCheck(PendingFlag, answer, BigRec)

END IF

IP -	OO,f'	. I)
77 :
78 :
79 :
80 :
= .1

	

emoryl byte DS :0000 (ACTIVE)
2655 :8000 CD 20 8D 58 00 9A F8 FE 1D F8 8B 02 19 25
2655 :0010 19 25 BB BA 19 25 A2 16 01 01 01 00 02 03
2655 :0020 FF FF FF FF FF FF FF FF FF FF FF FF 04 17
2655 :0030 EB 22 14 00 18 00 SS 26 FF FF FF FF 00 00
2655 :0040 00 00 00 00 00 00 00 00 00 00 00 00 00 00
2655 :0050 CD 21 CB 00 00 00 00 00 00 00 00 00 00 20

.J.) ommand

NV UP El PL
NZ NA PE NC

<FB=Trace> <FlO=Step> <FS=Go> <F6=Window> <F3=Display> <Sh+F3=Memory Format>

Figure 5.4 Code View Register Window

At the bottom of the window is a group of mnemonics representing the processor flags . 'hen
you first open the Register window, all values are shown in normal-intensity video . Any
subsequent changes are marked in high-intensity video . For example, suppose the overtlo \ \ flag
is not set when the Register window is first opened . The corresponding mnemonic is NV and
appears in light gray . If the overflow flag is subsequently set, the mnemonic changes to OV and
appears in bright white .

Choosing the 386 Instructions command (DOS only) from the Options menu displays the
registers as 32-bit values if your computer uses an 80386 processor . Selecting this command a
second time reverts to a 16-bit display . This command is not available in protected mode . the
registers are shown in 16-bit display only .

You can also display the registers of an 8087/287/387 coprocessor in a separate window by
choosing the 8087 command from the View menu. If your program use ,, the coprocessor

,
-

emulator, the emulated registers are displayed instead .

Using Code View

You can also directly cycle through these display formats by pressing F3 .

If a section of memory cannot be displayed as a valid floating-point number, the number ',ho ~v% n
includes the characters NAN (not a number) .

Displaying the Processor Registers
To view processor registers, choose Register from the View menu . Code View opens a windo
on the right side of the screen, as shown in Figure 5 .4. The current values of the
microprocessor's registers appear in this window .

Register Window

Getting Started

	

65

AX = 0030
BX = 0080
CX = 0002
DX 2665
SP 4CE4
BP 4CF8
SI 38C4
DI 40FO
DS 400D
ES 2665
SS 400D
CS 2665
IP 0030
FL 0206

Chapter 5

66

Modifying the Values of Variables,
Registers, and Memory
You can easily change the values of numeric variables, registers, or memory locations
displayed in the Watch, Local, Memory, Register, or 8087 window . Simply place the cursor at
the value you want to change and edit it to the appropriate value. To undo the last change you
made, press Alt+Backspace . You cannot directly change the value of string variables .

The starting address of each line of memory displayed is shown at the left of the Memory
window, in sc,~irrcnt :uc1clress form . Altering the address automatically shifts the display to the
corresponding section of memory . If that section is not used by your program, memory
locations are displayed as double question marks (T?) .

When you select Byte display from the Memory Window Options dialog box, CodeView
presents both a hexadecimal and an ASCII representation of the data in memory . (Byte display
is the default.) You can change data in memory either by entering new hex values over the
hexadecimal representation of your data or by entering character values over the character
representation .

To toggle a processor flag, click left on its mnemonic . You can also place the cursor on a
mnemonic, then press any key (except Tab or Spacebar) . Repeat to restore the flag to its
previous setting .

The effect of changing a register, flag, or memory location may vary from no effect at all to
crashing the operating system . You should be cautious when altering ntc~rhilk' Ierc'/ values ;
most of the items you would want to change can he altered from the Local or Watch window .

Direct manipulation of register values can be valuable, however . when you are debugging a
BASIC program that calls assembly language routines . You can change register values to test
assumptions before making changes in your source code and recompiling .

Setting Breakpoints
You can skip over the parts of the program that you don't want to examine by specifying one or
more lines as breakpoints. When you start the program by pressing F5, the program executes at
full speed up to the first breakpoint, then pauses . Pressing F5 continues program execution lip
to the next breakpoint, and so on .

You can set as many breakpoints as you like (limited only by available memory) . There are two
ways to set breakpoints :

•

	

Double-click anywhere on the desired breakpoint line . The selected line is highlighted to
show that it is a breakpoint . (CodeView highlights lines that have been selected as
breakpoints .) To remove the breakpoint, double-click on the line a second time .

•

	

Place the cursor anywhere on the line at which you want execution to pause . Press F-) to
select the line as a hreakpoint . Press FY a second time to remove the breakpoint .

A breakpoint line must he a program line that represents executable code . You cannot select a
blank line, a comment line, err a declaration Iine (such as a variable declaration) as a breakpoint .

Getting Started

Set Breakpoint

(•) Break at Location .
() Break at Location if Expression is True .
() Break at Location if Expression has Changed .
() Break When Expression is True .
() Break When Expression has Changed .

Location : [.78

Expression : [NBA

Pass Count : [I Length : [NBA I

Commands : [

	

I

Figure 5.5 Code View Set Breakpoint Dialog Box

~s~tr

	

When a breakpoint is tied to a variable, CodeView must check the variable's value after each
machine instruction is executed . This slows execution greatly . For maxllllulll speed when
debugging, either tie conditional breakpoints to specific lines, or set conditional breakpoints
only after you have reached the section of code that needs to be debugged .

I

< OX > <Cancel> < Help >

Using Code View

A breakpoint can also be set at a function or an explicit address . To set a breakpoint at a
function, enter its name in the Set Breakpoint dialog box . To set a breakpoint at an addres' .
enter the address in seg>ment :offcet form .

Once execution has paused, you can continue execution by pressing F5 .

Setting Conditional Breakpoints

CodeView lets you set conditional statements that stop execution when an expression become ,,
true or changes value . (QBX refers to these conditional breakpoints as "watchpoints .")

To set a conditional breakpoint :

1 . From the Watch menu, choose Set Breakpoint .
CodeView displays the Set Breakpoint dialog box, as shown in Figure 5 .5 .

2 . Select one of the conditional break options from the dialog box, such as Break When
Expression is True .
If you select one of the Break at Location options, CodeView takes you to the line number
displayed in the Location field when the breakpoint is reached . If you select one of the
other two options, CodeView takes you to the last statement that was executed .

3 . Choose OK .

l

Getting Started

	

67

Chapter 5

68

Replaying a Debug Session
CodeView can automatically create a history file with all the debugging instructions and input
data you entered when testing a program . This history file is used to replay the debug session to
a specific point .

To record a debug session, choose History On from the Run menu .

To stop recording . choose History On a second time .

Recordings can be used to keep track of debugging . You can quit after a long debugging
session, then pick up the session later in the same place .

The principal use of recording a debug session is to allow you to back up when you make an
error or overshoot the section of code with the bug . For example . you may have to execute a
function manually many times before its bug appears. If you then enter a command that alters
the machine's or program's status and thereby lose the information you need to find the cause
of the bug, you have to restart the program and manually repeat every debugging step to return
to that point. Even worse, if you don't remember the exact sequence of events that exposed the
bug, it could take hours to find your way back .

Recording your session eliminates this problem . Choosing Undo from the Run menu
automatically restarts the program and rapidly executes every debug command up to (but not
including) the last one you entered . You can repeat this process as many times as you like until
you return to the desired point in execution .

To add steps to an existing recorded session, choose History On . then select Replay . When
replay has completed, perform whatever new debugging steps you want, then select History On
a second time to terminate recording . The new tape contains both the original and the added
commands .

CodeView records only those mouse commands that apply to CodeView . Mouse commands
recognized by the application being debugged are not recorded .

Replay Limitations Under OS/2
There are some limitations to dynamic replay when debugging under OS/? :

•

	

The program must not respond to asynchronous events . (Replay under OS/2 Presentation
Manager is not currently supported because it violates this restriction .)

•

	

Breakpoints must be specified at specific source lines or for specific symbols (rather than
by absolute addresses), or replay may fail .

•

	

Single-thread programs behave normally during replay . However, one of the threads in a
multithread program may cause an asynchronous event, violating the first restriction .
Multithread programs are, therefore, more likely to fail during replay .

•

	

Multiprocess replay will fail . Each new process invokes a new CodeView session . The
existence of multiple sessions makes it impractical 10 record the sequence of events if you
execute conlillands in a session other than the original .

Getting Started

Advanced CodeView Techniques

Using Code View

Once you are comfortable displaying and changing variables . steppine through the program,
and using dynamic replay, you may want to experiment with advanced techniques .

Setting Command-Line Arguments
If your program retrieves command-line arguments, you can specify them with the Set Runtime
Arguments command from the Run Menu . Enter the arguments in the Command Line field
before you begin execution. (Arguments entered after execution begins cause an automatic
restart .)

Multiple Source Windows
You can open two Source windows simultaneously . The windows can display two differeiit
sections of the same program, or one can show the high-level listing and the other the assembl\
language listing . In the latter case, the contents of the windows are synchronized . The next
assembly language instruction to be executed matches the next line of source code .

You can move freely between these windows, executing a single line of source code or a single
assembly instruction at a time .

Using Breakpoints Efficiently
Breakpoints slow execution when debugging . You can increase CodeView's speed by using the
/R command-line switch if you have an 80386-based computer . This switch enables the 386's
four debug registers, which support breakpoint checking in hardware rather than In software .

Printing Selected Items
To print all or part of the contents of any window :

1 . From the File menu, choose Print .
CodeView displays the Print dialog box .

2 . Select the information to print and whether to append the information to an existing file or
to overwrite the file .
By default, print output is to the file CODEVIEW .LST in the current directory . If you want
the output to go to a printer, enter the appropriate device name (such as LPTI : or CONI2 :)
in the To File Name field .

3 . Choose OK.

Handling Register Variables
A register variable is stored in one of the microprocessor's registers, rather than in RAMM . This
speeds access to the variable .

Getting Stated

	

69

Chapter 5

70

A conventional variable can become a register variable when the compiler stores an often-used
variable, such as a loop variable, in a register to speed execution .

Register variables can cause problems during debugging . As with local variables, they are only
visible within the function where they are defined . In addition, a register variable may not
always he displayed with its current value .

Redirecting Code View Input and Output
The Command window accepts DOS-like commands that redirect input and output . These
commands can also be included on the command line that invokes CodeView . Whatever
follows the IC option on the command line is treated as a CodeView command to be
immediately executed at startup . For example :

infile ; t >outfile myprog

This command line redirects input to in file . which can contain startup commands for
CodeView. When Code View exhausts all commands in the input file, focus automatically shifts
to the Command window. Output is sent to outfile and echoed to the Command window .
The r must precede the > command for output to be sent to the Command window .

Redirection is a useful way to automate CodeView startup . It also lets you keep a viewable
record of command-line input and output . a feature not available with dynamic replay. (No
record is kept of mouse operations .) Some applications (particularly interactive ones) may need
modification to allow for redirection of input to the application itself .

Customizing Code View with the TOOLS. IN File
The TOOLS .INI file customizes the behavior and user interface of several Microsoft products .
You should place it in a directory pointed to the INIT environment variable . (If you do not use
the INIT environment variable, CodeView looks for TOOLS .INI only in its source directory .)

The CodeView section of TOOLS.INI is preceded by the following line :

(cvl

If you are running the protected-mode version of CodeView, use (cvpj instead . If you run both
versions, include both : acv cvp] .

Most of the TOOLS .INI customizations control screen colors, but you can also specify options,
such as startup commands or the name of the file receiving CodeView output . Online Help
contains full information about .all TOOLS .INI switches for CodeView .

Getting Started

Controlling Code View with Command-Line Options
The following options can be added to the command line that invokes CodeView :

Option

	

Effect

/2

	

Two-monitor debugging . One display shows the output of the
application: the other shows CodeView .

/25

	

Display in 25-line mode .

/43

	

Display in 43-line mode . (EGA or VGA only)

/50

	

Display in 50-line mode . (VGA only)

/B

	

Display in black and white .

/Ccomntands

	

All items following this switch are treated as CodeView command
to be executed immediately upon startup . Commands must be
separated with a semicolon (:) .

/Dl/mffersi_e]]

	

Use disk overlays, where hit ~ersi_c is the decimal size of the
overlay buffer, in kilobytes. The acceptable range is 16K to 12'~K .
with the default size 64K . (DOS only)

/E

	

Use expanded memory for symbolic information . (DOS only)

/F

	

Flip screen video pages . When your application does not use
graphics, up to eight video screen pages are available . Switching
from CodeView to the output screen is accomplished more quickly
than swapping (/S) by directly selecting the appropriate videt ~ ha,-,c.
Cannot be used with /S . (DOS only)

/I][0 I 1

	

/10 enables nonmaskable-interrupt and 5259-interrupt tr rppin~ .
This enables Ctrl+C and Ctrl+Break for PCs that CodeView duey
not recognize as IBM-compatible . /I or /I 1 turns off interrupt
trapping . (DOS only)

/K

	

Use this option if you encounter a deadlock situation because the
keyboard buffer is full when you restart the program you are
debugging, exit CodeView before your program finishes execution,
or debug an application that does not accept keystrokes .

/Ldlls

	

Load DLLs specified . DLLs must he separated by a semicolon is .
(OS/2 only)

/M

	

Disable the Mouse for CodeView . Does not affect the use of the
mouse in the application being debugged .

/NH0 I III

	

/No enables nonmaskable-interrupt trapping . This enables Ctrl+C
and Ctrl+Break for PCs that CodeView does not recognize as
IBM-compatible . /N or /N I turns off interrupt trapping.
(DOS only)

/O

	

Debug child processes (o//sl)rin,) . (OS/2 only

Using CodeVlew

Getting Started

	

71

Chapter 5

/R

/S

/x

72

	

Getting Started

Use 386 hardware debug registers . (DOS only)

Swap screen in buffers . When your program uses graphics . all
eight screen buffers must be used . Switching from CodeView to
the output screen is accomplished by saving the previous screen in
a buffer. Cannot be used with /F . (DOS only)

Use extended memory for symbolic information . (DOS only)

Chapter 6

Using Online Help

The Microsoft Advisor online Help system is more than a learning tool-it's a reference
database designed especially for professional programmers. Help gives you instant reference
information about the BASIC language, development environments, compiler options, utilities .
and error messages . You can also copy sample code from a Help screen and paste it directly
into your BASIC source file . Using the Microsoft Help File Creation utility (HELPMAKE) .
you can even create your own Help files .

This chapter describes :

•

	

Installing Help .

•

	

Organization of Help .

•

	

Navigating in Help .

•

	

Copying and pasting Help information .

•

	

Creating your own Help files .

•

	

Using QuickHelp .

Installing Help

Use the Setup program to install Help . In the Specify Files to Install menu, turn on the Help
Files for Chosen Tools check box . Setup includes all the Help files you need when it installs
Microsoft BASIC .

At this point, you can use online Help in the QuickBASIC Extended (QBX) environment . To
use Help in the Programmer's WorkBench (PWB) . CodeView, and QuickHelp environment .
you must specify where each of these applications should look for their Help files by setting the
HELPFILES environment variable . HELPFILES can be set in several different places . P\VB .
CodeView, and QuickHelp search the following locations in the order shown and use the first
HELPFILES setting they find :

1. Environment selection from the PWB Options menu . (This only has an effect in PW'B .

2. TOOLS .INI file .

3. AUTOEXEC .BAT file (DOS) or CONFIG .SYS file (OS/2) .

if HELPFILES is not set in one of these locations, PWB and QulckHelp will search for help
files in the current directory and in the directories listed in the PATH environment \ ariable .

Getting Started

	

73

Chapter 6

74

You can set HELPFILES and other environment variables for a session by running the
NEW-VARS .BAT (DOS) or NEW-VARS.CMD (OS/2) file from the command line . You may
want to incorporate the settings in these files into your AUTOEXEC .BAT (DOS) or
CONFIG .SYS (OS/2) files . For information on how to do this, see the section "After Running
Setup" in Chapter 2 .

Help Topics and Hyperlinks
Online Help is organized as a set of topics . Instead of thumbing through a manual, you can
move from one topic to another related topic by using links (or cross-references) . Help
remembers the last 20 screens you've viewed, so you can retrace your path at any time .

Explicit Cross-References
Explicit cross-references, called "hyperlinks," are tied to a word or phrase at a specific location
in Help. You simply select a hyperlink, using the mouse or keyboard, to move to a new screen
of related information .

Special characters set off hyperlink buttons . Figure 6 .1 shows examples .

HELP : DO . . . LOOP Statement	 I01--
ASyntax` 'Details

	

lExampleo-

	

AContents~ lIndexO, lBackt•

DO [{WHILE I UNTIL} condition]
[statementblock]

[EXIT DO]
[statementblock]

LOOP

•

	

condition A numeric expression that BASIC evaluates as true
(nonzero) or false (zero) .

•

	

EXIT DO An alternative exit from a DO . . . LOOP . Transfers
control to the statement following LOOP .

•

	

The program lines between the DO and LOOP statements are repeated
while a condition is true or until a condition becomes true .

•

	

See Details for alternate syntax .

See Also

	

AWHILE . . .WEHD<•

	

IFOR . . .NEXT~

Figure 6.1 Help Screen with Hyperlinks

To move forward between hyperlinks, press the Tab key : Shift+Tab moves you backward . You
can also type the first letter of a hyperlink to move to that hyperlink .

Implicit Cross-References
All BASIC keywords (functions, statements, operators, and metacommands) are implicit cross-
references. Implicit cross-references have no special formatting . For example, the word "open"
provides context-sensitive help on the OPEN statement wherever it appears, whether in your
programs or in a Help screen . To use an implicit cross-reference, place the cursor on or
immediately Following the keyword, and then press FI or click the right mouse button .

Getting Stalled

1 vperlink
Buttons

Help Categories
There are five categories of help :

•

	

Using Help

•

	

Keyword and symbol Help

•

	

Topic-based Help

•

	

Programming environment Help

•

	

Error message Help

Using Help
You can get information about the online Help system itself at any time by choosing the L yin«
Help command from the Help menu . The Using Help screen provides a quick overview of the
Help system and gives instructions for accessing Help with the keyboard or mouse .

Keyword and Symbol Help
Online Help provides context-sensitive help for BASIC keywords and for symbols in your
program, such as procedures and variables .

Keyword Help
Keywords include functions, statements, operators, and metacommands . Every keyword in
Microsoft BASIC is an implicit cross-reference . To get information on any BASIC keyword (ill
your program or within the online Help system), place the cursor on the keyword, and press F1
or click the right mouse button . For example, type do in the QBX View window, and then
press Fl . The Syntax screen for the DO . . . LOOP statement appears, as shown in Figure 6 .2 .

HELP : DO . . . LOOP Statement	 l0~-
ASynta0 ADetailsl- 4Examplel~

	

1Contents~ 4Index~ 4Backl-

DO [{WHILE : UNTIL} condition]
[statementblockl

[EXIT DO]
[statementblock]

LOOP

I condition

	

A numeric expression that BASIC evaluates as true
(nonzero) or false (zero) .

•

	

EXIT DO An alternative exit from a DO . . . LOOP . Transfers
control to the statement following LOOP .

•

	

The program lines between the DO and LOOP statements are repeated
while a condition is true or until a condition becomes true .

•

	

See Details for alternate syntax .

See Also

	

IWHILE . . .WENDO-

	

IFOR. . .NEXTh

Figure 6.2 BASIC Syntax Help Screen

Using Online Help

Getting Started

	

75

Chapter 6

76

If you want to see a programming example using the DO . . . LOOP statement, move to the Help
window, then choose the Example hyperlink . If you need additional information, choose the
Details hyperlink .

You can browse the complete list of BASIC keywords by choosing the Keywords by Task
hyperlink from the BASIC Help Table of Contents screen .

Symbol Help

To `get information on any symbol in your program from QBX, position the cursor anywhere on
the symbol and then press Fl or click the right mouse button . The Help system will identify the
symbol (variable . function, etc .) and where it is used in your program . This type of Help is only
available in QBX .

To view symbol information in PWB, you must use the Source Browser . For instructions on
using the Source Browser, see Chapter 4, "Using PWB ."

Topic-Based Help

You can use the Help system to get an overview of available topics when you have a general
idea of the information you need . For example, suppose you want to learn about QBX's
customizable keystrokes, but you don't know where to look . Choose the Contents hyperlink in
any Help window, or choose Contents from the Help menu . The BASIC Help Table of
Contents screen appears, as shown in Figure 6 .3 .

HELP : Table of Contents	l01-
ACopyriyht), 4Product Support),

	

' 'Contents), 4Index), 4Back"

-Orientation
lUsing Helps
AUsing Menus and Dialogs),
4Reywords by Task'

-Language Elements
(BASIC Character Set),
ABASIC Program Line),
(Variables, Constants, Data Types),
lExpressions and Operators),
AModules, Overlays, Procedures),

ommand-Line Options
1QBX Command Lines
IBC Command Line'

Figure 6.3 BASIC Help Table of Contents Screen

The BASIC Help Table of Contents screen is broken into five subgroups : Orientation,
Language Elements, Command-Line Options, Quick Reference, and Keys .

Getting Started

-Quick Reference
AQBX Memory and Capacity),
(ASCII Character Codes),
(Keyboard Scan Codes'
'Run-Time Error Codes'
A18 Common Questions),

-Keys
'Shortcut Keys),
(Editing Keys),
(View and Search Keys),
(Run and Debug Keys),
(Help Keys'
AConfiguring Keys),

Programming Environment Help
You can get context-sensitive Help on any menu command or dialog box . For ex,miple, tO Ikarn
about the Create File command in the QBX File menu :

1 . Open the File menu .

2 . Press the Down direction key to highlight Create File (do not press Enter), and then prey,,
Fl . The Help screen for the Create File command appears, as shown in Figure 6 .4 .

Figure 6.4 Help on the Programming Environment

You can also get help about a dialog box . Press Fl or click the Help button to display
information about the dialog box .

Error Message Help
Whenever you encounter an error message, you can press Fl to get help on the cause of the
error. Most error message Help screens contain suggestions on how to avoid the error .

Using Online Help

Gettinu Started

	

77

nrLr . UI CUIc r r lc wnunanu

Use to begin entering a new file for a multiple-module
program . This can be

•

	

A program module
I An include file
•

	

A document file

The new file will become part of the currently loaded
program .

Tip : Create File can be used when no program is loaded
as an alternative to the File menu's New Program
command to create a new main program module .

< ox >

Chapter 6

Navigating in the Help System
The following table summarizes Help keystrokes .

Press this key

Fl

PLDn

PgUp

Tab

S h i ft+Tab

To do this

Get Help on the selected item .

In QBX, get help on using the Help system . In PWB . CodeView,
and Quick- Help, Shift+Fl displays the Help Table of Contents .
Display previous Help screen . You can retrace your path through
the last 20 Help screens .

Close the Help window .

Scroll Help information down when the Help window is active .

Scroll Help information up when the Help window is active .

Move to the next hyperlink in the active Help window .

Move to the previous hyperlink in the active Help window .

Copying and Pasting Help Information
You can copy any text that appears in the Help window to another window . To test a sample
program from the Help window, just copy it to the program window and then choose Start
(QBX) or Execute (PWB) from the Run menu .

To copy and paste, follow these steps :

1 . Select the text you want to copy .

2 . Press Ctrl+lns .

3 . In the program window, place the cursor where you want to insert the text, and then press
Shift+Ins .

Creating Custom Help Files

78

The HELPMAKE utility allows you to create or modify Help files for use with Microsoft
products. For example, you could write Help text describing a new function you have written
for a Quick library . You can then display Help information about your function just as you
would display Microsoft-supplied Help information .

HELPMAKE translates Help text files into a Help database accessible from the QBX
programming environment or other Microsoft language products. You can either create Help
files from scratch, or you can use HELPMAKE to decompress the Microsoft-supplied Help
database and then modify it .

For complete information on building your own Help system, see Chapter 22, "Customizing
Online Help," in the Programmer's Guide, or select HELPMAKE from the main Help Table of
Contents in PWB .

Getting Started

Using QuickHelp
Microsoft QuickHelp lets you read Microsoft Advisor Help files without running a
programming environment . This is useful if you are running Microsoft Windows or OS/ 1 and
you want to keep Help information open in a window at all times . QuickHelp is also useful fOr
reading Help databases that you have created for your own applications .

To start QuickHelp . type :

QH

Figure 6.5 shows Microsoft QuickHelp displaying Help on itself .

Menus may be chosen by pressing the first letter of the menu (with or
without a CTRL or ALT key) . You can get help on a menu item by pressing the
F1 key while the menu item is highlighted, or by pressing the right mouse
button .

Microsoft QuickHelp

Figure 6.5 QuickHelp

QuickHelp searches for Help tiles in the paths and the order described in the section "Installing
Help" earlier in this chapter . In addition . QuickHelp also uses the QH environment variable to
define additional directories to search . For example :

SET' HELPFILES=C :ABC/\HELP
SET QH=C : LAt'JMAI~ `, HELP

If these lines are entered from the command line, QuickHelp will search in C :\BC7\HELP and
C:\LANMANV-IELP for Help files. PWB and CodeView, however, will not search in
C:\LANMAN\HELP unless it is included in the HELPFILES environment variable .

Using Online Help

hettrnp Started

	

79

File View Categories References Paste Options

	

F1=Help

t
Microsoft QuickHelp

B - Views previous topic in database HOME Moves to beginning of topic
D - Searches for duplicate topics END - Moves to end of topic
E - Continues a search PgUp - Moves up one screen
G - Goes to string in current topic PgDn - Moves down one screen
H - Displays this help screen UP - Moves up one line
I - Views history of topics viewed DN Moves down one line
L - Views last screen TAB Moves to next button
N - Views next topic in database ESC Exits menu or dialog box
S - Searches for topic
T - Displays table of contents
W - Hides QuickHelp window
X - Exits QuickHelp
_ - Prints current topic

Chapter 7
Memory Management in DOS

Overview

This chapter explains how to increase the amount of memory available under DOS to help yon
create the largest possible running applications using each of the Microsoft BASIC
environments . It shows you how to take advantage of extended and expanded menmorv h\ usin
one or more of the three device drivers included in the package : HIMEM .SYS .
SMARTDRV .SYS . or RAMDRIVE .SYS .

You can use a variety of techniques to make more memory available for program use, such al-.

•

	

Removing all unnecessary memory-resident programs and device drivers . (Check your
CONFIG.SYS and AUTOEXEC .BAT files to see what you have installed .)

•

	

Using extended and/or expanded memory . Extended and expanded memory are available
through the use of add-on memory boards . Some :,ystem hoards have extended or expanded
memory built in as well . Add-on memory boards include extended memory, expanded
memory, and some boards that can be configured for either. Expanded and extended
memory are used in different ways :

•

	

Extended memory . You can use the HIMEM .SYS device driver provided with III) ,,

package or another extended-memory driver .

• Expanded-memory emulators . Many extended-memory drivers can use some or all
memory to emulate expanded memory . Information in this chapter about expanded-
memory hardware applies to expanded-memory emulators as well .

•

	

Expanded memory . Expanded memory provides up to 12 niegabytes of buffer <pa~c to
the ISAM portion of a BASIC program .

You can use extended and expanded memory at the same time . However. only one
expanded-memory driver and one extended-memory manager can run on the system . L se
an expanded-memory emulator only if you have no expanded-memory hardware .

Uettlno Started

	

81

Chapter 7

Using Extended Memory (XMS)

82

Extended memory requires an 80286 or later processor . The extended-memory device drivers
compatible with BASIC observe the Extended Memory Specification (XMS), version 2 .0 and
hi`>her. You can use the HIMEM .SYS device driver provided in this package, or you can use
your own extended-memory driver if it supports XMS version 2 .0 or higher .

The HIMEM. S YS Device Driver
The HIMEM.SYS device driver provides a 64K area immediately above one megabyte called
the High Memory Area (HMA) . Only one piece of software can reside in HMA .

You must have DOS version 3 .0 or later to run HIMEM .SYS . To install HIMEM .SYS . place
the follo~sing statement in your CONFIG .SYS file :

device=llc/rir , cc . p[[hat/ijJHIMEM .SYS [j/HMAMIN=tsrrnninilh/NUMHANDLES=hcwitd/cc .s]j
O/SHADOW=[jON I OFFJJf j[/MACHINE=tnachinefl

In the preceding syntax . tsrnrin is the minimum size, in kilobytes, that a memory-resident
program must have to he placed in HMA . The default value of 0 lets any memory-resident
program request use of this area for extended memory .

The handles field sets the maximum number of Extended Memory Block handles that
HIMEM .SYS supports . Each piece of software that you load into extended memory above
HMA requires an additional handle . The hcutdlcs field defaults to 32 and must be between
1 and 12 . Each additional handle requires 6 bytes of memory .

The /SHADOW option enables or disables shadow RAM . Some computers make ROM faster
by "shadowing" it in RAM

	

that is, copying the ROM code into RAM memory at startup .
This uses some extended memory . On systems with 384K of extended memory, H1MEM .SYS
automatically disables shadowing . You can use /SHADOW=ON to explicitly enable shadowing
on systems with less than 384K of extended memory .

The /MACHINE option tells HIMEM .SYS what type of computer you are using . In most cases,
HIMEM .SYS automatically detects the type of machine you are using . Currently, the only
system which requires this switch is the Acer 1100 . If you are using this system, you should use
the option /MACHINE :ACER 1 110 .

Other Extended-Memory Device Drivers
In general, extended-memory device drivers make memory available by using three kinds of
addresses :

•

	

A 64K area starting at address FFFF:OOIO, just above conventional memory .

•

	

Addresses above this 64K area . This region can be accessed by temporarily switching into
protected mode, then copying the contents to a lower address .

•

	

Unused addresses above 640K but below one megabyte . These are areas reserved by the
system but currently unused .

Getting Started

HIMEM .SYS supports the first two kinds of addressing .

Some extended-memory device drivers can move memory-resident programs into the third
area-unused addresses below one megabyte . Doing so makes more conventional memor-
available .

For example, if you have an 80386 processor and the 386MAX .SYS device driver (from
Qualitas, Inc.), you may be able to move the ISAM TSR into unused address space . Thi,
requires a sufficiently large contiguous area of memory and is dependent on your system
configuration . Install 386MAX.SYS in your CONFIG .SYS file, and then execute the followin_
DOS-level commands :

386MAX loadhigh
PROISAMD
386MAX loadlow

The first command directs the 386MAX driver to load software into high memory (above
640K) . PROISAMD is the full version of the ISAM memory-resident program (database
creation and access). The third command restores normal loading .

Using Expanded Memory (EMS)
Expanded memory is compatible with all 8086-family processors . It is implemented by a
paging mechanism to swap up to 64K into an 8086-addressable area. The expanded-nmenmor
device drivers compatible with BASIC observe the Lotus-Intel-Microsoft (LIM) Expanded
Memory Specification (EMS). To ensure compatibility with QBX and ISAM, use device
drivers that support the LIM 4 .0 specification .

To use expanded memory, you must install an expanded-memory device driver in your
CONFIG .SYS file. Hardware manufacturers supply a device driver with their expanded
memory board. Two of the device drivers included in this package, RAMDRIVE .SYS and
SMARTDRV.SYS, can be used with expanded memory .

h.kiite-

	

All of the features described in this section also apply to expanded-memory emulators .

Using RAMDRI VE
The RAMDRIVE.SYS device driver lets you use a portion of your computer's memory as an
additional hard disk . This disk is referred to as a RAM disk or virtual disk and is much faster
than a physical hard disk .

You can place a RAM disk in conventional, extended, or expanded memory . On most
machines, RAMDRIVE.SYS runs fastest with expanded memory. RAMDRIVE .SYS alwwav'
uses some conventional memory . The exact amount depends on your hardware confi~gurltion
and varies between systems .

Memory Management in DOS

Getting Started 83

Chapter 7

84

The system reads and writes to the RAM disk almost as fast as to main memory . If you set the
TMP environment variable to a directory on a RAM disk, a number of programming tools
(notably LINK and ISAM) will use the RAM disk to hold temporary files, thus speeding up
operations . You can also copy libraries and frequently used executable files to RAMdrive at the
heginnin~u, of a session to increase speed . Placing source files on the RAM disk is risky since all
information is deleted from the RAM disk when you reboot .

To install RAMDRIVE .SYS, include the following command line in your CONFIG .SYS file :

dcvice=[1</rii •(c : Illjl)(at/iJIRAMDRIVE.SYS (~ d i.lk .c i =c J][~ .cc ctr~rsi .c ~(~e~ttrics~Q { /A I /E I /U]]

The following list explains the meaning of each option :

Option

	

Description

Disk size in kilobytes . The default size is 64K . the minimum is
16K, and the maximum is 4096K .

.~ecton -si_C

	

Sector size in bytes. The default size is 512 bytes . The other legal
values are 128, 256, and 1024 . If in doubt, use the default .

entric

	

Limits the number of root directory entries (files and subdirec-
tories) . The default size is 64 . the minimum is 2 . and the maximum
i s 1024 .

/A

	

Uses expanded memory . (This memory must conform to the
LIM 4.0 specification .) If you use /A, you cannot use /E or /U .

/E

	

Uses extended memory, making use of addresses above the one-
megabyte address space . If you use /E . you cannot use /A or /U .

/U Applicable only to AT&T 6300 PLUS motherboard. Specifies that
some or all of the 384K of extra memory on an AT&T 6300 PLUS
motherboard is to be used as an extra RAM drive . I K of the 384K
is reserved as overhead for RAMDRIVE .SYS . If you use /U . you
cannot use /A or /E .

Any Use of RAMDRIVE .SYS or SMARTDRV .SYS uses some conventional memory .
The versions of RAMDRIVE.SYS and SMARDRV .SYS provided with BASIC are compatible
with Windows version 3 .0. They are not compatible with Windows versions 2.11 and earlier .

Using SMARTDrive
The SMARTDRV .SYS device driver lets you use a portion of your computer's memory as a
disk-cache area . This mechanism serves as a temporary holding area for recently accessed data
from the hard disk, which significantly reduces data-access time if the desired information is in
cache .

You can place the SMARTDrive disk cache in either extended or expanded memory .

Getting Started

Memory Management lo DOS

To install SMARTDRV .SYS, include the following command line in your CONFIG .SYS III(: :

device=jjchrirrc :1JIIlput/iIJSMARTDRV .SYS Il normal rurhe .~i_c 1111 rrrinintrurr rw ltc- .~i=elllll .~ Il

The following list explains the meaning of each option :

Option

	

Description

nurma/curhcsi .e

	

Size of the disk cache in kilobytes . The default size is 256K tier
extended memory and all of available memory for expanded
memory . Several megabytes is a typical size for a disk cache :
you'll generally see little difference in performance unless the
cache is well over 500K in size .

mininurmcnchcsi_e

	

The smallest disk cache in kilobytes. Windows will reduces disk
cache to this number when running in real mode .to make more
memory available for its own use .

/A

	

Uses expanded memory . If this option is not present . then
SMARTDrive attempts to use extended memory .

Generally, the memory assigned to SMARTDRV .SYS cannot be used by other softw ure .
However, CodeView and Windows can share memory with SMARTDrive . Any remaining
memory is used for disk-cache operations .

ISAM Use of Expanded Memory
By default . ISAM uses about 1 .2 megabytes of expanded memory for buffer space (or as much
as available, whichever is less) . This helps to free conventional memory and improves
performance by providing far more buffers than could exist in conventional memory .

Depending on how much expanded memory you have . ISAM's use of 1 .? megabytes may
affect the performance of other programs that need this memory . To limit the amount of
expanded memory that ISAM uses, use the /Ie command-line option with the BASIC Compiler
or when starting the ISAM memory-resident program :

/l e :enisresert'e

In the syntax above, emsrcservc is the number of kilobytes to reserve for other software . The
setting /le :-I is a special value that disables ISAM 's use of expanded memory altogether .

For example, the following command line starts the ISAM nmenmor_y-resident program and
reserves 800K of expanded memory for other software, such as QBX or CodeView :

PROISAb1D /Ie :800

Use Me in conjunction with the QBX /Es option if your program code or a loaded Quick library
manages expanded memory . (See "Competing Use of Expanded Memory" later in this chapter .

Several other options affect how ISAM handles buffers . For complete documentation on how to
configure and install ISAM, as well as how the number of bufters affects programs . sCe Chapter
10, "Database Programming with ISAM," in the Pro ramrnrt'r's Guide .

liettin4 Stalled

	

85

Chapter 7

Considerations for QBX

86

The QBX environment and ISAM together require 450K to run (QBX itself requires over
300K). If you have 640K of conventional memory, QBX will support a moderate-sized
program without trouble, but large programs may require the use of extended or expanded
memory, especially if you use ISAM .

Using the INOFRILLS Option
You can use the /NOFRILLS option (abbreviated as /NOF) to make additional memory
available for program use. However, using /NOFRILLS reduces the functionality of the QBX
environment .

When you start QBX and use the /NOF command-line option . QBX uses about 19K less
memory but does not support any of the following menus :

s

	

Utility menu

•

	

Options Menu

•

	

Help menu

The /NOF option does not change the structure of the menu bar or status line, but the three
menus are unavailable and cannot be opened .

Extended Memory
QBX uses extended memory by moving approximately 60K of its own executable code out of
conventional memory . All the code removed represents space freed for use by your programs .

When using the HIMEM .SYS device driver, you should set tsrmin to 63 (64 .512 bytes) to
ensure that QBX has access to the high-memory area . The hunt//es field has no effect on QBX,
since these handles give access to addresses higher than the 64K area which QBX can use .

For example, the following entry in your CONFIG .SYS file installs HIMEM .SYS and ensures
that extended memory is available for QBX :

LDEVI ,-'E`. HIMEM . S t ; HMnMIN=t

Expanded Memory
When you start the QBX environment, expanded memory may have already been allocated to
memory-resident programs, most notably ISAM . QBX uses as much of the the remaining
expanded memory as it needs .

You can limit the amount of expanded memory used by QBX by using the /E : command-line
option:

/E :emslinrit

Getting Started

In the preceding syntax, emslinlit determines the maximum amount of expanded menmiury that
QBX will use, in kilobytes . A value of 0 disables QBX usage of expanded memory and can
improve the execution speed of some operations .

Assuming some expanded memory is available, QBX takes advantage of the memory in twO
ways :

∎ QBX automatically moves each unit of program code smaller than 16K into expanded
memory . Each procedure is a unit of code . The module-level code also constitutes a unit (it'
code

To see how large each procedure is, use the View SUBs command (press F-') . This
command lists each unit of code together with size in kilobytes . rounded to the nearest
kilobyte . You can determine which units are larger than 16K and should be divided into
smaller units (see Figure 7 .1). To guarantee best results . View SUBS should show sizes
ranging from 0 to 15, inclusive .

∎ If you give the /Ea command-line option, QBX moves arrays into expanded memory if thev
do not contain variable-length strings and are smaller than 16K . This option has a

drawback : arrays residing in expanded memory cannot be passed to modules written in
other languages (although you can pass array elements) . Therefore, _you may not want W

use /Ea with mixed-language programs .

This option affects all types of arrays except arrays of variable-length strings . which au-e not
placed in expanded memory .

This unit of code is too
large to fit in expanded memory .

CHRTDEMO .BAS is the main module

< Edit in Active >

	

< Edit in Split >

	

< Cancel >

< Delete >

	

< Move >

	

< Help >

Figure 7.1 QBX View SUBS Dialog Box

Memory Management in DOS

Getting Started

	

87

Choose program item to edit :

SUBs

CHRTDEMO .BAS 19 ClearData 1 Initialize 1
Axes 0 ClrForm 0 InputBorder 2
Axis 2 CIrHelp 0 InputOpt 1
AxisScale 2 Datalnput 1 InputSize 1
AxisTics 3 DataWindow 1 InputVal 1
ChartFonts 1 Disklnput 2 InRange 1
ChartOptions 0 DiskSave 1 ReyData 4
ChartType 1 ErrorMsg 0 Legend 2
ChartWindow 1 Help 1 ListData

Chapter 7

88

The following QBX command line allows 5O0K of expanded memory to be used and moves
arl'ays out of consentional memory :

QBX /E :500 /Ea

Getting Started

Once inside the QBX environment, you can determine how much expanded memory is actually
available to QBX by executing the statement FRE(-3) .

Competing Use of Expanded Memory
A Quick library can make use of expanded memory directly by using assembly code that calls
the expanded-memory interrupt . However. Quick libraries that do this must compete with QBX
for use of the memory . QBX will use as many 16K pages of expanded memory as required,
according to the rules described in the previous section (assuming that the memory is
available) .

In order to use expanded memory for Quick libraries, you need to keep two things in mind :

• You must use the /Es command-line option when starting QBX . This option saves and
restores the EMS state before and after every ISAM statement or call to a Quick library .
This save-and-restore operation involves significant overhead . so don't use it unless you
have a Quick library that manages expanded memory .

•

	

You may want to limit QBX use of expanded memory by using the /E : command-line
option . This option is not always necessary, because QBX does not reserve more memory
than it can use . However. the /E : option is useful for guaranteeing that your program always
has the expanded memory it needs .

The following example enables saving and restoring of the EMS state, and restricts the QBX
environment to using at most 500K of expanded memory :

QBX /E :500 /Es

Considerations for Programmer's WorkBench
PWB uses disk-based virtual memory for loaded source files . This means that the size of the
program you create is limited only by the amount of free disk space you have and the amount of
memory available for compiling and linking the program . It is possible, however, to run out of
memory for PWB itself if you load a large number of PWB extensions or have a memorv-
resident program . such as PROISAM, loaded .

You can make more memory available in PWB by not automatically loading the extension
files . The /DA options disables the auto-load function . You can then explicitly load only the
extensions you need by customizing your TOOLS .INI file . For more information, see the
section "Loading PWB Extensions Explicitly" in Chapter-I .

Considerations for Code View
When you debug a program in CodeView, three components compete for memory :

•

	

The program being debugged

•

	

The program's symbolic information

•

	

CodeView itself

To make the most memory available to the executable being debugged, CodeView
automatically uses expanded memory, extended memory . or disk overlays . In addition .
CodeView provides a utility for compressing program symbol information (CVPACK) . For
more information on CVPACK . see Chapter 5, "Using CodeView ."

Extended Memory
If HIMEM .SYS or another extended-memory device driver is installed . CodeViewy
automatically places all of the program symbol information and al I but 16K of CodeView itselt
in extended memory, leaving the remaining conventional memory available for program
execution .

The /X option is not required to use extended memory with CodeView, but if you specify /\
and an extended memory driver is not installed, Code View displays an error .

Expanded Memory
If extended memory is not available and RAMDRIVE .SYS . SMARTDRV .SYS . or a
compatible expanded memory manager is installed, CodeView uses available expanded
memory for program symbol information and for CodeView overlays .

In order for CodeView to use expanded memory, no single module's symbol intormaton can
exceed 48K . If symbol information exceeds this limit, try reducing filename information by not
specifying paths when you compile and using /Zd instead of /Zi .

The /E option is not required to use expanded memory with CodeView, but if you speciey /E
and an expanded memory driver is not installed, CodeView displays an error .

Overlays
If extended or expanded memory are not available, CodeView uses 64K disk overlays for its
executable . You can use the /Dbuf feirsi=e option to improve performance by reducing the size of
the overlay, making more memory available, or increasing the size of the overlay .

CodeView will not use overlays smaller than 16K nor larger than 128K . Therefore . the
minimum effective Value for hu/f 'rsi_e is 16 and the maximum is 128 .

Memory Mariagernent in DOS

Getting Started

	

89

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399

it ~-1U Part No . 12"~",Ql

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84
	page 85
	page 86
	page 87
	page 88
	page 89
	page 90
	page 91
	page 92
	page 93
	page 94
	page 95
	page 96
	page 97
	page 98
	page 99
	page 100

